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Conventional process monitoring method based on fast independent component analysis (FastICA) cannot take
the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the
adverse effects of themeasurement noises. In this paper, a newprocessmonitoring approach based on noisy time
structure ICA (NoisyTSICA) is proposed to solve such problem. A NoisyTSICA algorithm which can consider the
measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent
components (ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recur-
sive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for themonitoring statistic is constructed
to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank
reactor system demonstrate that the proposed NoisyTSICA-based monitoring method outperforms the conven-
tional FastICA-based monitoring method.
© 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

As modern industrial processes become more and more complex,
process monitoring plays a key role in ensuring the process safety,
product quality and economic profit. With a large number of process
variables measured in industrial processes, multivariate statistical
process monitoring (MSPM) techniques [1–4] which are a popular
kind of data-driven methods are developing rapidly for the process
fault detection and identification. The MSPM methods transform high-
dimensional measured data into low-dimensional space to extract
meaningful information for detecting and identifying abnormal situa-
tions of industrial processes. Among the numerous MSPM methods,
principal component analysis (PCA) is a classical approach. It extracts
uncorrelated latent variables called principle components (PCs) which
capture the most variances of the original variables and has many
extended versions for fault detection and identification [5–8]. However,
PCA can only consider up to the second-order variance–covariance
statistic and cannot make use of higher-order statistical information
contained in the process data [9], whichmay lead to inadequate feature
extraction and degraded monitoring performance. Furthermore, PCA

makes a strict assumption that the extracted PCs follow multivariate
Gaussian distributions to determine the control limits of themonitoring
statistics. In most cases, the essential latent variables of industrial pro-
cesses obey non-Gaussian distributions [10], and thus, there is a great
possibility that this assumption cannot be in accordance with realistic
industrial situations.

Recently, a newly emerging MSPM approach called independent
component analysis (ICA) is attracting more and more attention from
both the academic researchers and process engineers. Different from
PCA, ICA can further utilize the higher-order negentropy statistic [11]
or the second-order time-delayed covariance statistic [12] to recover
mutually independent non-Gaussian latent variables called indepen-
dent components (ICs) from the original measured variables and can
be applied to deal with non-Gaussian processes which are more practi-
cal in the real-world manufacturing environment [13]. Kano et al. [14]
proposed an ICA-based univariate statistical process monitoring
(USPM) method and demonstrated its superiority over the PCA-based
MSPM. But the number of ICs' monitoring charts is comparatively
large, which would raise the burden on the process monitoring. To
solve such problem, Lee et al. [15] constructed three Mahalanobis-type
monitoring statistics based on the extracted ICs and thus developed an
ICA-based MSPM method. On the basis of this work, various improved
versions of ICA were proposed by taking different process characteris-
tics into account. Stefatos andHamza [16] proposed a dynamic indepen-
dent component analysis (DICA)method for capturing process dynamic
pattern. Odiowei and Cao [17] combined canonical variate analysis
(CVA) with ICA and developed a state-space ICA method for dynamic
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process monitoring. Tian et al. [18] proposed a multiway kernel inde-
pendent component analysis (KICA) method for monitoring nonlinear
batch process. Considering the extraction of non-Gaussian feature and
the preservation of the local neighborhood structure simultaneously,
Cai et al. [19] integrated KICA with locality preserving projections
(LPP) for nonlinear processmonitoring. To account for the processmul-
timodal characteristic, Zhang et al. [20] developed a modified KICA
based process monitoringmethod by the introduction of the Kronecker
product. Rashid and Yu [21] proposed a hidden Markov model based
adaptive ICA approach for monitoring processes with multimodality.
In these studies, the well-known fast ICA algorithm (FastICA) [22] was
adopted as a promising feature extraction technique. However, these
FastICA-based process monitoring methods commonly used noise-free
ICAmodel and thus could not take the influence of measurement noises
into consideration. In fact, measurement noises always exist in industri-
al processes and thus inevitably contaminate measured data [23,24].
Under the adverse effects of measurement noises, the monitoring
performances of these FastICA-based monitoring methods may decline
drastically. Consequently, developing an improved ICA-based monitor-
ing method which can eliminate or attenuate the effects of measure-
ment noises is extremely important for enhancing the process
monitoring performance. To the best of our knowledge, currently,
there is one monitoring method based on probabilistic ICA (PICA) [24]
that can consider the measurement noises explicitly and can obtain
the ICs without noises from the normal offline data. Nevertheless, the
ICs calculated online are still corrupted by noises and thus cannot
effectively reflect the real process information.

Motivated by the above analysis, a new process monitoring method
based on noisy time structure ICA (NoisyTSICA) is proposed in this
paper. The process data are described with a noisy ICA model and
conducted robust prewhitening with the covariance matrix of the
measurement noises to obtain the whitened data. The NoisyTSICA
objective function is then constructed based on the time structure of
the whitened data and optimized by the gradient descent algorithm to
estimate themixingmatrix and extract the ICs. Furthermore, amonitor-
ing statistic is built to conduct fault detection by using the recursive
kurtosis estimations of the dominant ICs. Lastly, a contribution plot for
the constructed monitoring statistic is established to identify the fault
variables by applying sensitivity analysis. A simple example of estimat-
ing the mixing matrix and a process monitoring example of the contin-
uous stirred tank reactor are used to demonstrate the effectiveness of
the proposed monitoring method.

2. FastICA-based Monitoring Method

The conventional monitoring methods based on ICA usually adopt
the noise-free ICA model as follows

x ¼ As ð1Þ

where x = [x1, x2, ⋯, xm]T ∈ Rm × 1 denotes the vector of the zero-mean
measured variables, s= [s1, s2, ⋯, sm]T ∈ Rm × 1 is the vector of the zero-
mean ICs and A ∈ Rm × m is the unknown mixing matrix.

ICA tries to estimate both A and s only from x. Equivalently, the ob-
jective of ICA can be defined as follows: to find a de-mixing matrix
W ∈ Rm × m which can make the elements of the estimated vector
ŝ ∈ Rm × 1 given by

ŝ ¼ ŝ1; ŝ2; ⋯; ŝm½ �T ¼ Wx ð2Þ

be as independent of each other as possible.
Usually, the measured variables need to be whitened firstly. The

whitened variables z ∈ Rm × 1 are obtained by

z ¼ Qx ð3Þ

where Q = diag(λ1, λ2, ⋯, λm)−1/2[β1, β2, ⋯, βm]T ∈ Rm × m denotes the
whitening matrix, λi, i= 1, 2, ⋯,m are the eigenvalues of the measured
variables' covariancematrix Cx=E(xxT)∈ Rm × m and satisfy the condi-
tion λ1 ≥ λ2 ≥ ⋯ ≥ λm, diag(λ1, λ2, ⋯, λm) denotes the m × m diagonal
matrix with λ1, λ2, ⋯, λm as its diagonal elements, βi, i = 1, 2, ⋯, m are
the eigenvectors of Cx and E(⋅) denotes the expectation operator.

Then, the whitened variables satisfy the condition

E zzT
� �

¼ Im ð4Þ

where Im ∈ Rm × m is the identity matrix.
For the mathematical convenience, all the ICs can be assumed to

have the unit variance without loss of generality. Then Eq. (2) is
reformulated as

ŝ ¼ Wx ¼ UQx ¼ Uz ð5Þ

where W = UQ , U = [u1, u2, ⋯, um]T ∈ Rm × m is an orthogonal matrix
due to the reason that E(ŝŝT) = E(UzzTUT) = UE(zzT)UT = UUT = Im.

Thus, the problem of estimating the ordinary matrixW is converted
to a simpler problemof estimating the orthogonalmatrixU. To calculate
U, the FastICA algorithm based on the maximum negentropy criterion
[22] is widely used in the conventional ICA-based monitoring methods
[13–18]. The optimization objective of FastICA is defined as follows

max
uT∈U

J1 uT
� �

¼ max
uT∈U

E G uTz
� �� �

−E G υð Þð Þ
� �2

s:t: E uTz
� �2� �

¼ 1; uTu ¼ 1
ð6Þ

where uT ∈ R1× m is a row vector of the orthogonal matrix U, υ is a
Gaussian variable with zero mean and unit variance, and G(⋅) is a non-
quadratic function and can be chosen as G(uTz) = − exp(−(uTz)2/2).
The specific details of FastICA can be found in reference [22].

Once the orthogonal matrix U is obtained, the ICs are estimated by
Eq. (5) and arranged in the descending order according to their non-
Gaussian degrees measured by the negentropy statistic [18]. The row
vectors of U are also ordered correspondingly. The mixing matrix is
then estimated by Â = (UQ)−1. To conduct fault detection, the two
monitoring statistics are defined as follows [9,11,15–18,24]

I2 tð Þ ¼ UdQx tð Þð ÞT UdQx tð Þð Þ ¼ ŝd tð ÞTŝd tð Þ ð7Þ

SPE tð Þ ¼ x tð Þ−Q−1Ud
TUdQx tð Þ

� �T
x tð Þ−Q−1Ud

TUdQx tð Þ
� �

ð8Þ

where x(t) denotes the sample value of x at the sample time t,Ud is com-
posed of the first d row vectors of U, ŝd ∈ Rd × 1 is the vector of the d
dominant ICs, d is the number of the dominant ICs, I2(t) is used to mon-
itor the systematic part of the process variation and SPE(t) is used to
monitor the residual part of the process variation.

Once a fault is detected by Eqs. (7)–(8), the variable contributions of
x(t) to I2(t) and SPE(t) are calculated to identify the fault variables by
using the following equations, respectively [15]

CI2 tð Þ ¼ Q−1Ud
TUdQx tð Þ

Q−1Ud
TUdQx tð Þ�� ��

2

� UdQx tð Þk k2 ð9Þ

CSPE tð Þ ¼ x tð Þ−Q−1Ud
TUdQx tð Þ: ð10Þ

3. NoisyTSICA-based Monitoring Method

It is a well accepted fact that themeasured data are usually contam-
inated by the measurement noises with different intensities. Under the

163L. Cai, X. Tian / Chinese Journal of Chemical Engineering 23 (2015) 162–172



Download English Version:

https://daneshyari.com/en/article/168147

Download Persian Version:

https://daneshyari.com/article/168147

Daneshyari.com

https://daneshyari.com/en/article/168147
https://daneshyari.com/article/168147
https://daneshyari.com

