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a b s t r a c t

This study addresses problems that have arisen in the literature when calculating backward

bifurcations, especially in the context of epidemic modeling. Backward bifurcations are gen-

erally studied by varying a bifurcation parameter which in epidemiological models is usually

the so-called basic reproduction number R0. However, it is often overlooked that R0 is an ag-

gregate of parameters in the model. One cannot simply vary the aggregate R0 while leaving

all model parameters constant as has happened many times in the literature. We investigate

two scenarios. For the incorrect approach we fix all parameters in the aggregate R0 to constant

values, but R0 is nevertheless varied as a bifurcation parameter. In the correct approach, a key

parameter in R0 is allowed to vary, and hence R0 itself varies and acts as a natural bifurcation

parameter. We explore how the outcomes of these two approaches are substantially different.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Epidemiological models have become important tools for helping understand the qualitative dynamics controlling the spread

of infectious diseases. Many of these models have strong nonlinearities and therefore exhibit complex population dynamics and

possess subtle bifurcation properties. Recently there has been interest in so called “backward bifurcations” because of the unusual

thresholds they introduce. In this study we examine an overlooked problem in calculating backward bifurcation diagrams which

has led to repeated errors in the literature.

As is well known, the qualitative dynamics of most epidemiological models depends on the threshold quantity known as the

basic reproduction number R0 [1,2]. This quantity represents the average number of secondary infections generated by a typical

infected individual during the infectious period, when introduced into an entirely susceptible population. Generally, if R0 < 1 an

infected individual will on average be unable to replace himself/herself, and the disease will die out in time. If R0 > 1, an infected

individual will on average be able to infect more than one other and thus transmit through the population; as such an equilibrium

number of infectives I∗ could plausibly be maintained (I∗ > 0) . Thus R0 < 1 corresponds to an infection-free equilibrium (I∗ = 0),

while R0 > 1 corresponds to an endemic equilibrium I∗ > 0, and this is the usual forward bifurcation scenario shown in Fig. (1).

While the above characterization familiar to most epidemiological modelers is quite general, it has recently been observed

that it gives the wrong picture in the presence of a backward bifurcation. Backward bifurcations, which are characterized by

multiple coexisting equilibria, allow a disease to persist even though R0 < 1. More specifically, one can find a stable disease free

equilibrium coexisting with two endemic equilibria (I∗ > 0), one being unstable and the other stable even though R0 < 1. A range
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Fig. 1. The equilibrium I∗ = 0 is stable when R0 < 1 and unstable when R0 > 1. For I∗ > 0 and R0 > 1 the endemic equilibria is stable. There is a bifurcation and

exchange of stability at R0 = 1.

of different epidemiological models have been found to exhibit backward bifurcation, including models that incorporate behav-

ioral responses to perceived risks [3], vaccination [4,5], multiple groups [6], vector-borne diseases [7] and exogenous reinfection

[8–10]. The presence of backward bifurcation is important in a practical sense because control programs must reduce R0 further

than below unity to eliminate a disease.

The problem we address here stems from studies of backward bifurcation in the literature where there have been instances

where authors illustrate the phenomena by varying R0 without properly considering the fact that R0 is an aggregate of parameters

in the model. One cannot simply vary the aggregate R0 while leaving all model parameters constant as has been the practice

in a number of important studies [11–15]. To illustrate this problem we examine a (tuberculosis) TB model that incorporates

reinfection p as the parameter to induce backward bifurcation, although any other example can be used to exhibit the difference.

2. The model

The model consists of four subpopulations; susceptible (S), exposed (E), infectious (I) and recovered (R) individuals, and may

be described by the following equations:

dS

dt
= π − βSI − μS,

dE

dt
= βSI − pβEI − (μ + k)E,

dI

dt
= pβEI + kE − (μ + r + μd)I,

dR

dt
= rI − μR. (1)

The numbers of susceptible individuals increase by recruitment through births and immigration at a rate π . Susceptibles

who come into contact with infected individuals move straight to the exposed E class but they are not themselves yet infective.

The susceptible population is thus diminished due to contact with infected individuals at a rate βSI, where β represents the

per-capita effective contact rate of acquiring TB bacteria. Concomitantly, the numbers in the exposed class increase at a rate

βSI. Progression to the infectious state occurs when an exposed individual harbors a dormant infection that becomes active

due to immune system destabilization. This is the usual “slow TB” which can take years or decades before progression. Exposed

individuals move to the infected class I at rate (kE). In addition, exposed individuals can encounter infectious individuals (I) and

be reinfected leading to an acceleration into the infectious class at rate pβEI. The infected subpopulation is diminished when

individuals recover from TB due to treatment at rate r and disease induced death rate μd. Finally, the recovered sub-population

(R) is generated by recovery of infected individuals (at rate r). The natural death rate decrease all classes at the same rate via

the background mortality parameter μ. Though not necessary for our purposes, a more detailed description of the model and

parameters can be found in [15].

3. Backward bifurcation

Without going into detailed computation (see [16] for R0 computation), the basic reproduction number of the model is given

as

R0 = kβπ

μ(k + μ)(μ + r + μd)
.
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