

Contents lists available at ScienceDirect

Comptes Rendus Chimie

www.sciencedirect.com

South Europe-Japan Joint Forum on inorganic chemistry and its interfaces (Strasbourg, France, 17 & 18 October 2014)

Dinuclear palladium(I) sandwich complexes of furan and toluene

Koji Yamamoto^{b,c}, Yuki Ishikawa^{b,c}, Seita Kimura^{b,d}, Kohei Takase^d, Tetsuro Murahashi^{a,b,*}

^a Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

^b Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Science, Myodaiji, Okazaki, Aichi, 444-8787, Japan

^c Department of Structural Molecular Science, the Graduate University of Advanced Sciences, Myodaiji, Okazaki, Aichi, 444-8787, Japan ^d Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

ARTICLE INFO

Article history: Received 18 February 2015 Accepted after revision 22 April 2015 Available online 23 June 2015

Keywords: Palladium Sandwich complexes Heterocycles Arenes

1. Introduction

ABSTRACT

The reaction of a dinuclear palladium complex $[Pd_2(CH_3CN)_6][X]_2$ (X = BF₄, PF₆) with excess furan afforded the sandwich-type bis-furan dinuclear palladium(I) complex $[Pd_2(\mu$ -furan)_2(CH_3CN)_2][X]_2. The substitutionally labile bridging furan ligands in the dipalladium sandwich complex can be readily replaced with toluene to give the bistoluene dipalladium(I) sandwich complex $[Pd_2(\mu$ -toluene)_2(CH_3CN)_2][X]_2.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Increasing attention has been paid to the organopalladium complexes containing a Pd–Pd bond [1]. The coordination behavior or transformation of unsaturated hydrocarbons at a dinuclear palladium center has been investigated by employing reactive Pd^I-Pd^I complexes [1]. Representatively, the homoleptic nitrile dipalladium(I) complexes $[Pd_2(CH_3CN)_6][X]_2$ (1, $X = BF_4$: 1', $X = PF_6$) have been developed as the substitutionally labile Pd–Pd complexes for studying coordination modes and reaction patterns of unsaturated substrates at a dinuclear palladium center [2,3]. By employing 1, indeed, several new coordination modes or reaction patterns have been recently disclosed in our laboratory, such as dinuclear palladation of arenes [4] and the bridging π -coordination of pyrrole and indole [5]. Agapie et al. reported the bridging π -coordination of thiophene and furan to a diphosphinearene supported Pd^I-Pd^I moiety [6]. Here, we report the sandwich-type bridging π -coordination of furan and toluene to a dicationic Pd^I-Pd^I moiety.

2. Results and discussion

The coordination behavior of weakly coordinating organic substrates such as arenes and hetero-arenes to a Pd¹–Pd¹ moiety may be addressable when highly substitutionally labile Pd¹–Pd¹ complexes are used as the starting materials. We recently reported the bridging π -coordination of pyrrole or indole to a dicationic Pd¹–Pd¹ moiety derived from [Pd₂(CH₃CN)₆][BF₄]₂ (1) [5]. The resultant μ -pyrrole Pd₂ complex [Pd₂(μ -pyrrole)₂(CH₃CN)₂][BF₄]₂(2) or μ -indole Pd₂ complex [Pd₂(μ -indole)₂(CH₃CN)₂][BF₄]₂

http://dx.doi.org/10.1016/j.crci.2015.04.007

1631-0748/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

^{*} Corresponding author at: Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.

E-mail address: mura@apc.titech.ac.jp (T. Murahashi).

(3) are stable in solution at ambient temperature, while the π -adducts of non-chelating, parent pyrrole or indole to mononuclear Pd^{II} or Pd⁰ moieties have not been isolated so far. As a part of our study on the bridging π -coordination of weakly coordinating arenes and hetero-arenes [4,5], here. we employed furan as the bridging substrate. Addition of furan (2 equiv) to **1** in CD_3NO_2 at ambient temperature showed no sign of furan coordination in the ¹H NMR spectra. However, precipitation from the solution of 1 or 1' in CH₃NO₂ in the presence of a large excess of furan gave the bis-furan sandwich complex $[Pd_2(\mu-furan)_2(CH_3CN)_2][X]_2$ $(\mathbf{4}, X = BF_4; \mathbf{4}', X = PF_6)$ (Eq. 1). A single crystal of **4** suitable for X-ray structure analysis was obtained through vapor diffusion of Et₂O into a CH₃NO₂ solution at ambient temperature. The molecular structure of 4 was shown in Fig. 1. The furan ligands coordinate to a Pd¹–Pd¹ moiety via μ - η^2 : η^2 bridging mode in a mutually staggered arrangement (st-4). The Pd-Pd bond length (2.486(2) Å) is in the range of normal Pd¹-Pd¹ lengths [1a], and is similar to that of the bis-pyrrole Pd₂ complex 2 (Pd-Pd = 2.4783(9)Å) [5]. A longer Pd-Pd bond was reported in a 2-methylfuranbridged Pd₂ complex $[Pd_2(\mu-2-methylfuran)(\mu-terphenyl$ diphosphine)][BF₄]₂ (Pd–Pd = 2.6518(9) Å), where the backside bridging ligand is the μ - η^2 : η^2 -arene ring [6].

The ¹H NMR spectra of **4** in a mixed solvent CD₂Cl₂-CD₃NO₂ at 25 °C exhibited two broad resonances for the furan protons at δ_{H2} = 8.57 ppm (2-position) and δ_{H3} = 6.98 ppm (3-position). Lowering the temperature down to -50 °C caused each resonance to decoalesce to two resonances, indicating a rapid equilibrium between two isomers (major/ minor = 62/38; for major isomer, δ_{H2} = 8.63 ppm and δ_{H3} = 6.88 ppm; for minor isomer, δ_{H2} = 8.19 ppm and δ_{H3} = 6.95 ppm). There are two possible isomers for the μ - η^2 : η^2 -furan sandwich, i.e. a staggered arrangement (**st**-**4**) and an eclipsed arrangement (**ec**-**4**), where the former was identified in the crystalline state. In solution, presumably, these two possible isomers **st**-**4** and **ec**-**4** exist in equilibrium (Eq. 2). The bis-furan dipalladium complex **4** gradually decomposed in CD₃NO₂ at ambient temperature.

We confirmed that the bridging furan ligands in **4** or **4**' are easily replaced with toluene or pyrrole. Addition of large

Fig. 1. (Color online.) ORTEP of $[Pd_2(\mu-furan)_2(CH_3CN)_2][BF_4]_2$ (4) (30% probability ellipsoids; hydrogen atoms and counter anions are omitted for clarity. Selected bond lengths (Å): Pd1–Pd1* 2.486(2), Pd1–C1 2.28(3), Pd1–C2 2.27(2), Pd1–C3* 2.31(2), Pd1–C4* 2.25(2), Pd1–N1 2.13(2), C1–C2 1.30(4), C2–C3 1.42(3), C3–C4 1.31(4), C4–O1 1.39(3), O1–C1 1.36(2).

excess toluene to a CH₃NO₂ solution of 4 or 4' afforded the bis-toluene dipalladium(I) complex [Pd₂(µ-tolue $ne_{2}(CH_{3}CN)_{2}[X]_{2}$ (5, X = BF₄; 5', X = PF₆) (Eq. 3). A related dicationic bis-benzene dipalladium complex [Pd2(µ-benzene)₂(CH₃CN)₂][BF₄]₂ was recently prepared directly from **1** in the presence of a large excess of benzene [4], but its structure has not been determined by X-ray structural analysis. A single crystal of 5 or 5' suitable for X-ray analysis was obtained by recrystallization from CH₃NO₂/toluene at -30 °C. The molecular structure of 5' is shown in Fig. 2. The two toluene ligands coordinate to a Pd-Pd moiety (Pd-Pd = 2.5651(4)Å) in a μ - η^2 (C1–C2): η^2 (C3–C4) manner (Fig. 2). The related neutral bis-toluene Pd₂ sandwich complexes, $Pd_2(\mu$ -toluene)₂(GaCl₄)₂ (**6**), $Pd_2(\mu$ -toluene)₂ $(GaBr_4)_2$ (7), and $Pd_2(\mu$ -toluene)₂ $(Ga_2Cl_7)_2$ (8), were structurally characterized by Kloo et al.; in each case, the coordination mode of toluene is in a μ - η^2 (C1-C2): η^2 (C3-C4) mode or a μ - $\eta^{2}(C1-C2):\eta^{2}(C4-C5)$ mode [7–9]. Concerning the arene rings, uncoordinated C5-C6(1.379(5)Å) is considerably shorter than other C-C ring bonds (C1-C2, C2-C3, C3–C4, C4–C5, and C1–C6 are in the range of 1.406(5) Å-1.429(7)Å). ¹³C NMR spectra of **5** in CD₃NO₂ showed the averaged resonance for the ortho- or meta-carbons at 25 °C $(\delta = 112 \text{ ppm for ortho-carbons}, \delta = 106 \text{ ppm for meta-}$ carbons). The ¹³C NMR resonance pattern for the toluene ligands did not change, even at lower temperature down to -20 °C in a mixed solvent CD₃NO₂-CD₂Cl₂, indicating the rapid fluxional behavior of the μ -toluene ligands in solution. The bis-toluene dipalladium complex 5 decomposed gradually in CD₃NO₂ solution at ambient temperature.

Treatment of the bis-furan dipalladium complex $\mathbf{4}$ with pyrrole (2 equiv) in CD₃NO₂ at ambient temperature

Download English Version:

https://daneshyari.com/en/article/170294

Download Persian Version:

https://daneshyari.com/article/170294

Daneshyari.com