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parameters. Thus, in the absence of boundary layers, the Smagorinsky model does
not over dissipate.
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1. Introduction

The Smagorinsky model, used for turbulent flow simulations, [1,2], is given by
ug+u-Vu—vAu—V - ((056)2 |Vu|Vu> +Vp=f(z) & V-u=0. (1)

It is related to the Ladyzhenskaya model [3-5] and the von Neumann-Richtmyer method for shocks. In (1),
v is the kinematic viscosity, 6 < 1 is a model length scale, the Reynolds number is Re = LU/v where
U, L are given in (3), and Cs ~ 0.1. Experience with the model, e.g., [2], indicates it over dissipates, often
severely, consistent with estimates of model energy dissipation rates for shear flows in [6]. Model refinements
aim at reducing model dissipation occur as early as 1975, [7], and currently, [2] Section 4.3 p. 117 onwards,
include approaches such as dynamic parameter selection, structural sensors, the accentuation technique and
damping functions. Perhaps surprisingly, Theorem 1 below establishes that the Smagorinsky model does
not over dissipate in the absence of boundary layers.
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Let 2 = (0, Lo)3. For ¢ = u, ug, f, p impose periodicity

¢(x + Loej, t) = o(x,t) j=1,2,3 and / ¢pdx = 0. (2)
7}

The data ug(x), f(x) are smooth, periodic, have zero mean and satisfy V- ug = 0 and V- f = 0. The model
energy dissipation rate from (5) below is

cs(u) = |21 /Q VIVu(e, )] + (Csd)2|Vu(x, 1) da

and the long time average of a function ¢(t) is defined by
T

(¢) = lim sup % o(t)dt

T—o0 0

The estimate below, (e5) ~ U?/L, is consistent as Re — 00, — 0 with both phenomenology, [8], and the
rate proven for the Navier—Stokes equations in [9-11].
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Theorem 1. (eg) satisfies: for any 0 < o < %,
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1.1. Related work

The energy dissipation rate is a fundamental statistic of turbulence, e.g., [8,12]. In 1992 Constantin and
Doering [9] established a direct link between phenomenology and NSE predicted energy dissipation. This
work builds on [13,14] (and others) and has developed in many important directions subsequently.

2. Proof of Theorem 1

Let || - ||, (-,+), | - ||, denote the usual L?(£2) norm, inner product and LP({2) norm. The force, large scale
velocity and length scales, F, U, L, are

F= <|Q||f||2>, = <|}Z|||u|2>é and Q

1 F F F
L =min{ 2[5, e
mm{' T (LN <5||Vf||§>s}

It is easy to check that L has units of length and satisfies

m\»—\

F F2 1 F3
o < = 2< d — I 4
Solutions to (1) (2) are known, e.g., [4,3,5], to be unique strong solutions and satisfy the energy equality
1 r T
)P+ [ et = 5o fual + [ () dr (5)
2|92| 0 2|9| o [4£]

Here eg(u) = go(u) + e5(u), g0 = |2|7v||Vu(t)||? and g5 = |2]71(Cs6)?||Vu(t)||3. From (5) and standard
arguments it follows that

1 T
sup Jlu(t)||* < C(data) < oo and —/ es(u)dt < C(data) < 0. (6)
te(0,00) T 0
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