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In this paper, the inverse eigenvalue problem of reconstructing 
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submatrix and part of the eigenvalues of its submatrix 
is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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Explicit formulas for the mean and variance of the solutions of stochastic differential
equations with linear drift and diffusion coefficients in state and time are derived
in terms of an exponential matrix. This result improved a previous one by means
of which the mean and variance are expressed in terms of a linear combination of
higher dimensional exponential matrices.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For their simplicity and importance, linear Stochastic Differential Equations (SDEs) have been the focus
of intensive researches resulting in a broad and deep knowledge of the properties of their solutions. Among
these properties, the mean and variance of the solutions have been well studied. Specifically, the Ordinary
Differential Equations (ODEs) that describe the dynamics of the mean and variance are well known (see,
e.g., [1]). However, since the explicit solutions of these ODEs are not available in general, numerical solutions
are required. Typically, these approximate solutions can be computed by means of a numerical integrator for
the differential equations or by a numerical quadrature applied to the integral representation of the mean
and variance (see, e.g., [2,3]). Alternatively, for homogeneous (no affine) linear SDEs, the mean and variance
could be approximated via truncated Magnus expansions (see, e.g., [4]). Nevertheless, for some subclasses
of linear equations, explicit expressions for the mean and variance of the solution can be obtained, which is
clearly profitable from theoretical and practical viewpoint. Example of them are the formulas for the scalar
linear SDEs [1], the multidimensional linear SDEs with additive noise [5], the homogeneous linear SDEs [4],
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and the SDEs with linear drift and diffusion coefficients in state and time (see Eq. (1)) [6,7]. In particular,
the explicit formulas for the mean and variance of the last class of equations have become important in
the practical implementation of suboptimal linear filters [6], Local Linearization filters [7] and approximate
Innovation estimators [8]. In a variety of applications, these methods have shown high effectiveness and effi-
ciency for the estimation of unobserved components and unknown parameters of nonlinear SDEs given a set
of discrete observations. Remarkable is the identification, from actual data, of neurophysiological, financial
and molecular models among others (see, e.g., [9–11]). Since the formulas for the mean and variance obtained
in [6,7] are expressed in terms of a linear combination of seven exponential matrices, any simplification of
them might imply a sensible reduction of the computational cost of the mentioned system identification
methods and, consequently, a positive impact in applications.

In this paper, simplified explicit formulas for the mean and variance of SDEs with linear drift and diffusion
coefficients in state and time are obtained in terms of just one exponential matrix of lower dimensionality.
The formulas are derived from the solution of the ODEs that describe the evolution of the mean and the
second moment of the SDEs. The variance is then obtained from the well-known formula that involves the
first two moments. The computational benefits of the simplified formulas are pointed out.

2. Notation and preliminaries

Let us consider the d-dimensional linear stochastic differential equation

dx(t) = (Ax(t) + a(t))dt+
m
i=1

(Bix(t) + bi(t))dwi(t) (1)

for all t ∈ [t0, T ], where w = (w1, . . . ,wm) is an m-dimensional standard Wiener process, A and Bi are
d × d matrices, and a(t) = a0 + a1t and bi(t) = bi,0 + bi,1t are d-dimensional vectors. Suppose that there
exist the first two moments of x for all t ∈ [t0, T ].

The ordinary differential equations for the d-dimensional vector mean mt = E(x(t)) and the d×d matrix
second moment Pt = E(x(t)xᵀ(t)) of x(t) are [1]

dmt
dt

= Amt + a(t) and dPt
dt

= APt + PtAᵀ +
m
i=1

BiPtBᵀ
i + B(t),

where

B(t) = a(t)mᵀ
t + mtaᵀ(t) +

m
i=1

Bimtbᵀ
i (t) + bimᵀ

tB
ᵀ
i (t) + bi(t)bᵀ

i (t). (2)

The solution of these equations can be written as [6]

mt = m0 + LeC(t−t0)r (3)

and

vec(Pt) = eA(t−t0)(vec(P0) +
 t−t0

0
e−Asvec(B(s+ t0))ds), (4)

where m0 = E(x(t0)) and P0 = E(x(t0)xᵀ(t0)) are the first two moments of x at t0, and the matrices C, L
and r are defined as

C =

A a1 Am0 + a(t0)
0 0 1
0 0 0

 ∈ ℜ(d+2)×(d+2), (5)
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