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a b s t r a c t

Let x = f (x), where x ∈ R. Clearly, if there exists b > a > 0 such that f ∈ C [a, b]
and either f (a) ≤ a and f (b) ≥ b or f (a) ≥ a and f (b) ≤ b, then there is
x∗ ∈ [a, b] such that x∗ = f (x∗), that is, the function f (x) has a fixed point x∗ ∈
[a, b]. By using the above main idea and famous Guo–Krasnosel’skii fixed point
theorem, existence of positive solutions for a nonlinear second order difference
equation and a discrete second order system with the Dirichlet boundary conditions
will be considered. The new existence results will be obtained. In particular, the
main idea is also valid for the partial difference problems or the general nonlinear
algebraic system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a cone if it satisfies the
following two conditions: (i) x ∈ P and λ ≥ 0 implies that λx ∈ P , and (ii) x ∈ P and −x ∈ P implies that
x = θ, where θ ∈ E is called to be the zero element of E.

Now we state the Guo–Krasnosel’skii fixed point theorem concerning cone expansion and compression of
norm type as follows (see [1,2]).

Lemma 1. Let Ω1 and Ω2 be two bounded open sets in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Suppose that A : P
∩

Ω2\Ω1


→ P is completely continuous. If either (H1) ∥Ax∥ ≤ ∥x∥ for x ∈ P ∩ ∂Ω1 and ∥Ax∥ ≥ ∥x∥ for

x ∈ P ∩ ∂Ω2, or (H2) ∥Ax∥ ≥ ∥x∥ for x ∈ P ∩ ∂Ω1 and ∥Ax∥ ≤ ∥x∥ for x ∈ P ∩ ∂Ω2 holds, then A has at
least one fixed point in P ∩


Ω2\Ω1


.
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By using Lemma 1, many existence results, in particular, existence of positive solutions for the boundary
value problems, the periodic systems, the nonlinear integral equation of Hammerstein type, etc. have been
extensively established. In the general case, the growth conditions of the nonlinear term will be given at the
neighborhood of the zero point and the infinite point. In view of Lemma 1, theoretically we may obtain any
fixed point in Banach space E when we structure a suitable cone P and two suitable open sets Ω1 and Ω2.

For example, we let E = R and consider the existence of roots for the equation x = f (x). In this case,
there are only two cones R+ = [0,+∞) and R− = (−∞, 0]. Clearly, if there exists b > a > 0 such that
f ∈ C [a, b] and either f (a) ≤ a and f (b) ≥ b or f (a) ≥ a and f (b) ≤ b, then there is x∗ ∈ [a, b] such that
x∗ = f (x∗), that is, the function f (x) has a fixed point x∗ ∈ [a, b]. At this time, the function only need to
have definition on [a, b].

Then, can we expand this good idea to a general case? In this paper, we will consider the discrete Dirichlet
boundary value problem of the form

∆2xi−1 + f (xi) = 0, i ∈ [1, n] ,
x0 = 0 = xn+1,

(1)

where n is a positive integer, [1, n] = {1, 2, · · ·, n}, ∆ is the forward difference operator, that is, ∆xi−1 =
xi − xi−1, and ∆2xi−1 = ∆ (∆xi−1). By constructing some suitable P and the suitable open sets Ω1 and
Ω2, the existence of positive solutions of (1) will be considered.

Let x = col (x1, x2, . . . , xn), f (x) = col (f (x1) , f (x2) , . . . , f (xn)), and

A =


2 −1 0 · · · 0
−1 2 −1 · · · 0

· · · · · · · · ·
0 · · · 2 −1
0 · · · 0 −1 2


n×n

which has an inverse G = (gij), which is given by

gij =


(n− i+ 1) j
n+ 1 , 1 ≤ j ≤ i ≤ n,

(n− j + 1) i
n+ 1 , 1 ≤ i ≤ j ≤ n.

(2)

See Cheng [3]. Then problem (1) can be rewritten by matrix and vector in the form

Ax = f (x) , (3)
x = Gf (x) (4)

or

xi =
n
j=1
gijf (xj) for i ∈ [1, n] . (5)

Clearly, the nonlinear algebraic system (4) can be regarded as an operator equation in the Banach space
E = Rn. Thus, we can use the Guo–Krasnosel’skii fixed point theorem to obtain some existence results of
positive solutions for (4). Such problem will be considered in the next section.

Our idea can also be used to consider the difference system of the form
∆2xi−1 + f (xi, yi) = 0, i ∈ [1, n] ,
∆2yi−1 + g (xi, yj) = 0, i ∈ [1, n] ,
x0 = xn+1 = y0 = yn+1 = 0.

(6)
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