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Let f be a continuous function in [0, 1] with f(0) = 0 = f(1) and f > 0 on ]0, 1[. We
show that, under additional mild conditions on f , the minimal speed for travelling
waves of
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+ f(u), (0.1)

may be computed via a constrained minimum problem which in turn is related to
the solution of a singular boundary value problem in the half line.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this note, let f : [0, 1] → R be a continuous function such that f(0) = f(1) = 0 and f(u) >
0 if u ∈ (0, 1). In the theory of Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equations, such a function
is sometimes referred to as a function of type A (see e.g. [1]).

Also, let p > 1.
In [2] the notions of admissible speed and critical (i.e. minimal) speed have been introduced for travelling

waves to reaction–diffusion equations driven by the one-dimensional p-Laplacian operator, namely
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+ f(u). (1.2)
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The relevant front wave profiles u(x+ ct) with speed c are given by the (monotone) solutions of the second
order problem

(|u′|p−2u′)′ − cu′ + f(u) = 0, u(−∞) = 0, u(+∞) = 1. (1.3)

Let q be the conjugate of p, that is 1
p + 1

q = 1. The solutions of the parametric first order boundary value
problem (where we write y+ = max(y, 0))

y′ = q(c y+
1
p − f(u)), 0 ≤ u ≤ 1, y(0) = 0 = y(1), y > 0 in ]0.1[ (1.4)

yield the trajectories of solutions of (1.3) via the relationship

u′ = y(u(t))1/p.

We recall the following assumptions, used in [2].

M = Mp := sup
0<u<1

f(u)
uq−1 < +∞; (Hp)

µ := lim
u→0+

f(u)
uq−1 exists, 0 ≤ µ < +∞. (H ′p)

It follows from results in [2] that there is a 1–1 correspondence between solutions of (1.3) (up to translation)
taking values in ]0, 1] and solutions of (1.4) that are strictly positive in ]0, 1[. These sets of solutions are
nonempty provided (Hp) holds. Also, basic properties of the profiles and their speeds, now classical in the
FKPP theory (p = 2), were extended in [2] to the p-Laplacian model. In particular, if (Hp) holds, the set of
admissible speeds – that is, values of the parameter c such that (1.4) has a solution – is an interval [c∗,+∞[
where

µ
1
q p

1
p q

1
q ≤ c∗ ≤M

1
q p

1
p q

1
q (1.5)

(the first inequality being valid if the stronger (H ′p) holds). The minimum admissible value c∗ of the parameter
c is called critical speed.

Remark 1.1. An elementary calculation on the basis of (1.4) shows that, given a number a > 0, c is an
admissible speed with respect to f if and only if ca

1
p is admissible with respect to af .

For the case of linear diffusion (p = 2), variational characterizations of the critical speed c∗ are known:
in [3] a variational formulation is presented, based on the second order ordinary differential equation satisfied
by the wave profiles; in [4] the authors use the first order model that represents the wave trajectories in a
phase plane to establish another defining property of variational type for c∗.

The purpose of this note is to obtain a variational property of c∗ in the framework of (1.3). We shall use
some ideas from [3].

Remark 1.2. It will be useful for our purpose to recall the role played by functions of type B. A function
f : [0, 1] → R is said to be of type B if it is continuous and there exists δ ∈]0, 1[ such that f(s) = 0 if
0 ≤ s ≤ δ or s = 1, and f(s) > 0 if δ < s < 1.

It is known that if f is of type B there exists exactly one admissible speed c∗ of (1.3), that is, (1.4) has
a positive solution for exactly this value of the parameter c. Moreover, if fn is a nondecreasing sequence of
functions of type B and limn→∞ fn(x) = f(x), then with obvious notation limn→∞ c∗(fn) = c∗(f). See [2],
section 4.
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