Global existence of periodic solutions in an infection model ${ }^{\text {Th }}$

Xinguo Sun ${ }^{\text {a,b }}$, Junjie Wei ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
${ }^{\text {b }}$ School of Science, China University of Petroleum (East China), Qingdao, 266580, PR China

A R T I C L E I N F O

Article history:

Received 31 December 2014
Accepted 31 March 2015
Available online 17 April 2015

Keywords:

Infection
CTL response
Hopf bifurcation
Periodic solutions

Abstract

In this paper, a HTLV-I infection model with CTL immune response is considered. Taking the immune delay as a bifurcation parameter we investigate the global existence of periodic solutions of this model which shows existence of multiple periodic solutions theoretically.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Li and Shu [1] have considered the following HTLV-I model

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\lambda-d_{1} x(t)-\beta x(t) y(t) \tag{1.1}\\
y^{\prime}(t)=\beta x(t) y(t)-d_{2} y(t)-\gamma y(t) z(t) \\
z^{\prime}(t)=\mu y(t-\tau) z(t-\tau)-d_{3} z(t)
\end{array}\right.
$$

The numbers of uninfected CD4 ${ }^{+}$T-cell population and infected $\mathrm{CD} 4^{+}$T-cell population are denoted by $x(t)$ and $y(t)$, respectively. $z(t)$ denotes the number of HTLV-I-specific CD8 ${ }^{+}$CTLs. For more detail about the model, we refer readers to [1-3].

For system (1.1), Li and Shu [1] have obtained the global stability of equilibria and local bifurcation. The main goal of this paper is to study global existence of periodic solutions of this system. Our results obtained are a complement of the works of Li and Shu [1]. On the global existence of periodic solutions for delay differential equations, we refer readers to [4,5,7-10].

[^0]We state some results of Li and Shu [1] in following which shall be used.
For $\tau>0$, let $\mathcal{C}=\mathcal{C}([-\tau, 0], \mathbb{R})$, and the nonnegative cone of \mathcal{C} is defined as $\mathcal{C}^{+}=\mathcal{C}\left([-\tau, 0], \mathbb{R}_{+}\right)$. Initial conditions for system (1.1) are chosen at $t=0$ as

$$
\begin{equation*}
\varphi \in \mathbb{R}_{+} \times \mathcal{C}^{+} \times \mathcal{C}^{+}, \quad \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right), \quad \varphi_{i}(0)>0, \quad i=1,2,3 \tag{1.2}
\end{equation*}
$$

Lemma 1.1. Under initial condition (1.2), all solutions of system (1.1) are positive and ultimately bounded in $\mathbb{R}_{+} \times \mathcal{C} \times \mathcal{C}$. Furthermore, all solutions eventually enter and remain in the following bounded region:

$$
\Gamma^{*}=\left\{(x, y, z) \in \mathbb{R}_{+} \times \mathcal{C}^{+} \times \mathcal{C}^{+}:\|x\| \leq \frac{\lambda}{d_{1}}+\varepsilon,\|x+y\| \leq \frac{\lambda}{\tilde{d}}+\varepsilon,\left\|x+y+\frac{\gamma}{\mu} z\right\| \leq \frac{\lambda}{d}+\varepsilon\right\}
$$

where $\widetilde{d}=\min \left\{d_{1}, d_{2}\right\}>0, d=\min \left\{d_{1}, d_{2}, d_{3}\right\}>0, \varepsilon$ is arbitrarily small positive number.
From Lemma 1.1, we know that the dynamics of system (1.1) can be analyzed in the following bounded feasible region

$$
\Gamma=\left\{(x, y, z) \in \mathbb{R}_{+} \times \mathcal{C}^{+} \times \mathcal{C}^{+}:\|x\| \leq \frac{\lambda}{d_{1}},\|x+y\| \leq \frac{\lambda}{\widetilde{d}},\left\|x+y+\frac{\gamma}{\mu} z\right\| \leq \frac{\lambda}{d}\right\}
$$

Moreover, the region Γ is positive invariant for system (1.1).
System (1.1) always has an infection-free equilibrium $P_{0}=\left(x_{0}, 0,0\right), x_{0}=\frac{\lambda}{d_{1}}$. In addition to P_{0}, the system can have two chronic-infection equilibria $P_{1}=(\bar{x}, \bar{y}, 0)$ and $P_{2}=\left(x^{*}, y^{*}, z^{*}\right)$ in Γ.

Let

$$
\begin{equation*}
R_{0}=\frac{\lambda \beta}{d_{1} d_{2}}, \quad R_{1}=\frac{\lambda \beta \mu}{d_{1} d_{2} \mu+\beta d_{2} d_{3}} . \tag{1.3}
\end{equation*}
$$

They are called the basic reproduction numbers for viral infection and for CTL response, respectively. Obviously $R_{1}<R_{0}$ always holds.

It can be verified that the equilibrium $P_{1}=(\bar{x}, \bar{y}, 0)$ exists if and only if $R_{0}>1$ and that

$$
\begin{equation*}
\bar{x}=\frac{d_{2}}{\beta}=\frac{\lambda}{d_{1} R_{0}}, \quad \bar{y}=\frac{\lambda \beta-d_{1} d_{2}}{\beta d_{2}}=\frac{d_{1}\left(R_{0}-1\right)}{\beta} . \tag{1.4}
\end{equation*}
$$

The coordinates of the equilibrium $P_{2}=\left(x^{*}, y^{*}, z^{*}\right)$ are given by

$$
\begin{equation*}
x^{*}=\frac{\lambda \mu}{d_{1} \mu+\beta d_{3}}=\frac{d_{2} R_{1}}{\beta}, \quad y^{*}=\frac{d_{3}}{\mu}, \quad z^{*}=\frac{\beta \lambda \mu-d_{1} d_{2} \mu-\beta d_{2} d_{3}}{\left(d_{1} \mu+\beta d_{3}\right) \gamma}=\frac{d_{1} d_{2} \mu+\beta d_{2} d_{3}}{\left(d_{1} \mu+\beta d_{3}\right) \gamma}\left(R_{1}-1\right) \tag{1.5}
\end{equation*}
$$

Therefore, P_{2} exists in the interior of Γ if and only if $R_{1}>1$.

Lemma 1.2. (1) If $R_{1}<1<R_{0}$, then the equilibrium P_{1} is globally asymptotically stable in $\Gamma \backslash\{x-a x i s\}$. If $R_{1}>1$, then P_{1} is unstable.
(2) If $R_{1}>1$, then the equilibrium P_{2} is globally asymptotically stable when $\tau=0$.

2. Hopf branches analysis

In this section, we always assume that $R_{1}>1$ holds. The characteristic equation associated with the linearization of system (1.1) at P_{2} is given by

$$
\begin{equation*}
\xi^{3}+a_{2} \xi^{2}+a_{1} \xi+a_{0}+\left(b_{2} \xi^{2}+b_{1} \xi+b_{0}\right) e^{-\tau \xi}=0 . \tag{2.1}
\end{equation*}
$$

https://daneshyari.com/en/article/1707685

Download Persian Version:

https://daneshyari.com/article/1707685

Daneshyari.com

[^0]: * This research is supported by National Natural Science Foundations of China (No. 11371111), the Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110044) and Shandong Provincial Natural Science Foundation, China (No. ZR2013AQ023).
 * Corresponding author.

 E-mail address: weijj@hit.edu.cn (J. Wei).

