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a b s t r a c t

We study the asymptotic integration problem for second-order nonlinear delay dif-
ferential equations of the form (p(t)x′(t))′+q(t)x(t) = f(t, x(g(t))). It is shown that
if u and v are principal and nonprincipal solutions of equation (p(t)x′)′+ q(t)x = 0,
then there are solutions x1(t) and x2(t) of the above nonlinear equation such that
x1(t) = au(t) + o(u(t)), t→∞ and x2(t) = bv(t) + o(v(t)), t→∞.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of asymptotic integration for second-order differential equations has received considerable
attention during the last decades. Most results however are related to differential equations without delay,
see the excellent survey paper by Agarwal et al. [1] and the references cited therein. For some recent results
we may refer the author in particular to [2–4].

In the present work we study the effect of delay on the asymptotic integration problem for the second-order
nonlinear delay differential equation

(p(t)x′(t))′ + q(t)x(t) = f(t, x(g(t))), (1)

where p ∈ C([t0,∞), [0,∞)), q ∈ C([t0,∞),R), f ∈ C([t0,∞) × R,R), and g ∈ C([t0,∞),R) such that
limt→∞ g(t) =∞ and −τ ≤ g(t) ≤ t for some τ > 0.
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To the best of our knowledge the first studies in this direction were done by Sobol’ [5], Cooke [6–8],
Wong [9], Onose [10], and Kusano and Naito [11].

In [11, Theorem 2] the authors showed the existence of a solution of

(p(t)x′(t))′ = f(t, x(g(t))) (2)

that is asymptotic to aρ(t), a ̸= 0 as t → ∞, where ρ satisfies
∞
ρ(g(t))f(t, c2(ρ(g(t)))2)dt < ∞ for some

c > 0, and f(t, x) is sub-linear or super-linear.
Trench [12] studied the more general equation (1) and proved that the equation has a solution x(t) which

behaves for large t like a given solution y(t) of the ordinary differential equation

(p(t)x′(t))′ + q(t)x(t) = 0. (3)

More precisely, he obtained x(t) = y(t) + o(yi(t)), t → ∞, i = 1, 2, where yi might be a principal or a
nonprincipal solution of (3).

In 2007, Kusano et al. [2] investigated the asymptotic integration problem for

(p(t)x′)′ + q(t)x = f(t, x), t ≥ t0 (4)

under the condition |f(t, x)| ≤ h(t)φ(x), where h is a continuous function on [a,∞) for some a > 0, and φ
is a continuous and non-decreasing function on [0,∞). They proved that if u is a principal solution of (3)
such that for some b > 0,  ∞

a

1
p(t)u2(t)

 ∞
t

h(s)u(s)φ(bu(s))dsdt <∞

holds, then there exists a positive solution x(t) of the nonlinear equation (4) such that

x(t) = (b/2)u(t) + o(u(t)), t→∞.

A time scale extension of this theorem can be found in Ünal and Zafer [13].
Very recently, Ertem and Zafer [14] proved that if there exist φ ∈ C([0,∞), [0,∞)) and h1, h2 ∈

C([t1,∞), [0,∞)) satisfying

|f(t, x)| ≤ h1(t)φ

|x|
v(t)


+ h2(t), t ≥ T (5)

for some T > t1, and if
∞
T
v(s)hi(s)ds <∞ for i = 1, 2, then for any given a, b ∈ R there is a solution x(t)

of (4) such that

x(t) = av(t) + bu(t) + o(u(t)), t→∞.

In the present paper we provide a contribution to the asymptotic integration problem for delay equations
of the form (1). Our motivation stems from the above mentioned works and a compactness criterion employed
in [15] for the study of equations without delay. We will observe that the delay is very crucial in changing
the behavior of the solutions.

2. Main results

Recall that if Eq. (3) is nonoscillatory at ∞, then there exist such solutions u and v, called principal and
nonprincipal respectively. While a principal solution u is unique up to a constant multiple, any solution v
that is linearly independent of u is a nonprincipal solution (see e.g., [16,17]).

In the proofs we will take the following pair of principal and nonprincipal solutions:
u(t), v(t) = u(t)

 t
t1

1
p(s)u2(s) ds


(6)
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