

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/issn/15375110

Research Paper

System dynamics modelling of an integrated pig production supply chain

Engineering

Kullapapruk Piewthongngam ^a, Prasert Vijitnopparat ^a, Supachai Pathumnakul ^{b,*}, Sawvapark Chumpatong ^b, Monchai Duangjinda ^c

^a Esaan Center for Business and Economic Research, Faculty of Management Science, Khon Kaen University, Khon Kaen 40002, Thailand

^b Supply Chain and Logistics Systems Research Unit, Faculty of Engineering, Khon Kaen University,

Khon Kaen 40002, Thailand

^c Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

ARTICLE INFO

Article history: Received 23 January 2013 Received in revised form 13 June 2014 Accepted 13 August 2014 Published online 3 September 2014

Keywords: Pork chain Supply chain management System dynamics Simulations The supply chain for pigs is a long chain that is not resilient to environmental changes. The most vulnerable point in the chain occurs at the pig production level, which consists of breeding units, great grandparents, grandparents, parents and fattening units. Similar to other agricultural chains, the pig chain is susceptible to disruptions, such as disease outbreaks. The reaction to any disruptions in supply or demand can take several months or even years. A manager might be unable to anticipate changes in the production units and, thus, be unable to effectively manage the chain. In this study, we develop a system dynamics model as a tool for managers to visualise the movement of the entire production chain. This tool enables the integration of important factors at each breeding level that will affect the number of fattening pigs. Scenarios were applied to explore the mechanism of the model, and case studies were developed to represent an integrated pig company.

© 2014 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past, pigs were produced in fragmented, loosely coordinated units. Now, specialisation and vertical integration have led to farms and companies organised into a 'pork chain' (Pérez, De Castro, & Furnols, 2009; Roríguez-Sánchex, Plà-Aragonés, & Albornoz, 2012; Rodríguez, Plà-Aragonés, & Flaulin, 2014; Sosnicki & Newman, 2010). This closely aligned chain often includes vertically and horizontally linked partners, such as geneticists and genetic improvement programmes, farmers, processors, distributors, and retailers (Rodríguez et al., 2014; Sosnicki & Newman, 2010). Collaboration is required among these units to deliver specific meat quality parameters (e.g., tenderness and juiciness) to customers in a timely manner (Roríguez-Sánchex et al., 2012; Sosnicki & Newman, 2010). To meet market demand, pigs, under a batch management scheme, must be delivered within

^{*} Corresponding author. Tel./fax: +66 43 343117.

E-mail addresses: pkullap@kku.ac.th (K. Piewthongngam), supa_pat@kku.ac.th (S. Pathumnakul). http://dx.doi.org/10.1016/j.biosystemseng.2014.08.007

^{1537-5110/© 2014} IAgrE. Published by Elsevier Ltd. All rights reserved.

Nomenclature		CS _i NBA:	the flow of culled sows in parity i (sows per week).
Rates vai	iables	11DIII	week).
FCrate _i	the 'failure to conceive' rate in parity i (expressed	PWD _i	the flow of piglets in parity i that died before
	as a percentage per week).		weaning (piglets per week).
Arate _i	the abortion rate in parity i (expressed as a	PWS _i	the flow of piglets in parity i entering the weaned
	percentage per week).		state (piglets per week).
Nrate _i	the 'not-in-pig' rate in parity i (expressed as a	WDead	the flow of dead weaners (weaners per week).
	percentage per week).	TWG	the flow of weaners entering the gilt state
Srate _i	the service rate in parity i (expressed as a		(weaners per week).
	percentage per week).	TWB	the flow of weaners entering the boar state
Crate _i	the culling rate in parity i (sows per week).		(weaners per week).
ABA_i	the 'live births per farrowing' rate in parity i	CGilt	the flow of culled and dead gilts (gilts per week).
	(piglets per farrowing).	PGilt	the flow of gilts with a passing replacement score
PDrate _i	the pre-weaning mortality rate in parity i		(gilts per week).
	(expressed as a percentage per week).	Ext1	the first flow of gilts sold to external customers for
WDrate	the weaner mortality rate (expressed as a		the first time (gilts per week).
	percentage per week).	FGilt1	the flow of gilts with a failing replacement score
SBR	the ratio of sows to boars.		for the first assessment transferring to fatting
CGrate	the culling and death rate in gilts (expressed as a		units (gilts per week).
PGrate1	percentage per week).	FGilt2	the flow of gilts with a failing replacement score
	the rate of gilts passing first replacement score		for the second assessment transferring to fatting
	(expressed as a percentage per week).		units (gilts per week).
PGrate2	the rate of gilts passing second replacement score	Oth	the flow of gilts transferred to other herds within
_	(expressed as a percentage per week).		the company (gilts per week).
Rrate	the replacement rate (expressed as a percentage	Ext2	the second flow of gilts sold to external customers
	per week).		(gilts per week).
Flow variables		Stock variables	
FCS _i	the flow of mated sows that fail to conceive in	$GW1_3_i$	the number of gestation sows in weeks 1 through 3
	parity I (sows per week).	01114 45	in parity i (sows).
A _i	the flow of 'aborted pregnancy' sows in parity i	GW4_15 _i	the number of gestation sows in weeks 4 through
	(sows per week).	01114.6	15 in parity i (sows).
NIPi	the flow of sows not in pig or sows that go full-	GW16 _i	the number of gestation sows in week 16 in parity i
	term (presumed pregnant and do not farrow) in	00	(sows).
MC	parity i (sows per week).	OSowi	the number of open sows in parity I that are
MS _i	the flow of mated sows in parity i (sows per week).	I Court	available to mate (sows).
IKS	the flow of gilts that pass the assessment test, are	LSOWi	the number of sows in parity I that are in the
	in a replacement nerd, and are ready to be mated	DC	lactating period (sows).
TOC	(sows per week).	DSowi	the number of dry sows in parity I waiting to be
IOSi	(normalized to the next parity		the number of nights in parity i yet to be weened
TGW4 _i	(sows per week).	PWi	(niclets)
	the now of sows in parity i transiting from	Ween	(pigiets).
TCW16	the flow of some in parity i transiting from	Cil+	the number of gilts in the gilt neel (gilts)
1 G W 10 _i	destation week 15 to week 16 (source per week)	R	the number of replacement sows (sows)
Far	the flow of gestation some in parity i entering the	K	the number of replacement sows (sows).
rur _i	farrowing stage at the end of week 16 (source per	Other var	riables
	week)	TSow	total number of sows in the herd (sows).
AL	the flow of sows in parity i after the lactation	MSow	the desirable herd size (sows).
1101	neriod transiting to dry some (some per week)		
	period dansing to dry sows (sows per week).		

a specific time window at a specific quantity and quality (Jalvingh, Dijkhuizen, & van Arendonk, 1992; Oliveira, Yus, & Guitián, 2009; Singh, 1986). For this reason and for sanitation, the chain is characterised by an "all-in-all-out" batch system (Lurette et al., 2008). The production from the first stage of the chain must be delivered to downstream units. In this context, disruption to the operations of an upstream sow farm affects the operations of the downstream fattening units, slaughtering house, pork processor and retailers. The effect of an upstream disruption on the downstream chain is a problematic characteristic of the pork chain as well as other food supply chains in the sense that their physical flow cannot Download English Version:

https://daneshyari.com/en/article/1711102

Download Persian Version:

https://daneshyari.com/article/1711102

Daneshyari.com