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a b s t r a c t

This paper is concerned with the problem of finite-time boundedness, L2 gain analysis
and control of Markovian jump switched neural networks (MJSNNs) with additive time-
varying delays. Sufficient conditions to guarantee finite-time bounded of MJSNNs with
additive time-varying delays are presented. These conditions are delay-dependent and are
given in terms of linear matrix inequalities (LMIs). Moreover, finite-time L2-gain analysis
of switched neural networks with additive time-varying delays are given to measure its
disturbance tolerance capability in the fixed time interval. In addition finite-time control
of MJSNNs is studied. Detailed proofs are accomplished by using Lyapunov-functionals and
average dwell time approach (ADT). Finally, numerical example is given to demonstrate the
effectiveness of the proposed approach.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, neural networks (especially switched neural networks, recurrent neural networks, Hopfield neural
networks and cellular neural networks) have been successfully applied inmany areas such as pattern recognition, associative
memory, image processing, fault diagnosis, and combinatorial optimization. Many papers have focused on studying the
existence, uniqueness, and global robust asymptotic stability of the equilibrium point in the presence of time delays and
parameter uncertainties for various classes of nonlinear neural networks (see [1–8]).

Switched neural networks (SNNs), whose individual sub-systems are a set of neural networks, have attracted significant
attention and have been successfully applied to many fields such as high-speed signal processing, artificial intelligence and
gene selection in DNA micro array analysis [9–11]. Recent researches in switched time-delay system typically focus on the
analysis of dynamic behaviors, such as stability, controllability, reachability, and observability aiming to design controllers
with guaranteed stability and performance [12–17].

Recently, the authors in (see [18–23]) reported that the signals transmitted, in the network control system, fromonepoint
to another pass through few segments of networks, which can possibly induce successive delays with different properties
due to the variable network transmission conditions which may cause time delay with some different characteristics in
practical applications. Based on this, a new model for neural networks with two additive time-varying delays has been
proposed in [21,23]. For example, the time delay in the dynamical model such as ẋ(t) = Ax(t) + W1x(t − d1(t) − d2(t))
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where d1(t) is the time delay induced from sensor to controller and d2(t) is the delay induced from controller to the actuator.
The stability analysis for such systems has been carried out in [18,20] by using two additive time-varying delay components,
d1(t) + d2(t) = d(t). Recently, we derived a stability problem for neural networks with two additive time-varying delay
components. By constructing the Lyapunov–Krasovskii functional and considering the relationship between time-varying
delays and their upper delay bounds, delay-dependent stability criteria are obtained by using reciprocally convex method
and convex polyhedron method respectively [21–23].

It is well known that Markovian jump neural networks can be regarded as a special class of systems, which can
model dynamic systems whose structures are subject to random abrupt parameter changes resulting from component or
interconnection failures, sudden environment changes, etc. (see [24–27]).

Dwell-time switching supervisors force every candidate controller to remain in the loop for at least τa of time, thus
guaranteeing a fixed dwell-time of τ0. Unfortunately, with nonlinear system this may lead to finite escape of the closed-
loop [28,29]. ADT switching is a class of restricted switching signals that the number of switches in a finite interval is bounded
and the average dwell time between consecutive switching is a constant. It is well-known that the ADT scheme characterizes
a large class of stable switching signals and its extreme case is the arbitrary switching [30]. Thus, the ADT method is very
important not only in theory, but also in practice. Considerable attention has been taken to investigate the stability and
stabilization problems both in linear and nonlinear systems (see [31–35] and references there in) applying ADT method.

Meanwhile, the concept of finite-time stability has been revisited in the light of linear matrix inequalities (LMIs)
techniques and Lyapunov function theory. Some appealing results were obtained to ensure finite-time stability, finite-time
boundedness, and finite-time stabilization of various systems including linear systems, fuzzy systems, network systems,
stochastic systems, and so on [36–39]. The problem about finite-time stability, L2-gain analysis has been widely learned
in the literature [40,41]. It is worth pointing out that there is a difference between finite-time stability and Lyapunov
asymptotic stability, and they are also independent of each other. Recently, finite-time stability for SNNs based on the
technique of ADT and the problem of finite-time boundedness for the SNNs with time delays was investigated (see [42]).

The problem of stability and synchronization for finite-time Markovian jump neural networks with mixed mode-
dependent time delays has drawnmuch attention [43–45], to the best of authors’ knowledge no results are available yet on
finite-time boundedness, L2-gain analysis and finite-time control of MJSNNs with additive time-varying delays.

Motivated by this, in this paper finite-time boundedness, finite-time L2-gain analysis and control ofMJSNNswith additive
time-varying delays are discussed. Our contributions are as follows: (1) LMI conditions for the system dynamics with the
switching signal are given to guarantee finite-time boundedness of MJSNNs; (2) finite-time L2-gain analysis and control are
presented to measure the disturbance tolerance capability of the system within the prescribed time interval by applying
ADT method.

The paper is organized as follows. In Section 2, problem formulations and some definitions are presented. In Section 3,
based on LMIs, sufficient conditions to guarantee finite-time boundedness and finite-time L2-gain analysis and control
of MJSNNs are given. Finally, a numerical example is presented to illustrate the efficiency of the proposed method in
Section 5.

Notation. The notation used in this paper is standard. Rn denotes n dimensional Euclidean, the superscript ‘‘T ’’ denotes
the transpose and the notation P > 0 (≥ 0) means P is real symmetric positive (semi-positive) definite, max(P) and
min(P) denote the maximum and minimum eigenvalues of matrix P , respectively. I is an identity matrix with appropriate
dimension. diag{ai} denotes the diagonal matrix with the diagonal elements ai, (i = 1, 2, . . .). The asterisk (∗) in a matrix is
used to denote a term that is induced by symmetry. E{· | F(tk)} stands for the conditional mathematical expectation, where
F(tk) = ν{(x(t0), r(t0)), . . . , (x(tk), r(tk))} is the ν-algebra generated by {(x(tl), r(tl)), 0 ≤ l ≤ k}. The switching sequence
is noted as {(t0, σ (t0)), . . . , (tk, σ (tk)), . . . | limk→∞ tk = ∞}, where tk, σ (tk) represent switching instant and switching
sequence value.

2. System description and preliminaries

Consider the following MJSNNs with additive time varying delay

ẋ(t) = −A(rt , σt)x(t)+ W0(rt , σt)f (x(t))+ W1(rt , σt)f (x(t − d1(t)− d2(t)))+ B0(rt)u(t)+ B1(rt)w(t),
z(t) = C(rt , σt)x(t)+ D0(rt)u(t)+ D1(rt)w(t),
x(t) = ϑ(t), t ∈ [−d, 0],


(1)

where t ∈ {1, 2, . . . ,N}, N ∈ N, N is the set of positive integers. x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input
vector, z(t) ∈ Rr is the controlled output, andw(t) ∈ Rs is the exogenous disturbance satisfying

∥w∥
2
2 =

 T

0
wT (t)w(t)dt < δ. (2)

f (x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ∈ Rn is the neuron activation function, A(rt , σt) is a positive diagonal
matrix,W0(rt , σt), W1(rt , σt), B0(rt), B1(rt), C(rt , σt), D0(rt), D1(rt) are theweight connectionmatriceswith appropriate
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