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a b s t r a c t

The influence of an interfacial heat release and heat consumption on nonlinear convective flows, de-
veloped under the joint action of buoyant and thermocapillary effects in a laterally heated two-layer
system with periodic boundary conditions, is investigated. Regimes of traveling waves and modulated
traveling waves have been obtained. It is found that rather intensive heat sinks at the interface can lead
to the change of the direction of the waves' propagation.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is known that two-layer liquid systems are subject to nu-
merous instabilities (for a review, see [1,2]). Several classes of in-
stabilities have been found by means of the linear stability theory
for purely thermocapillary flows [3–6] and for buoyant-thermo-
capillary flows [7–10]. For the most typical kind of instability,
hydrothermal instability, the appearance of oblique waves moving
upstream has been predicted by the theory and justified in ex-
periments [11–13]. However, two-dimensional waves moving
downstream have also been observed in experiments [14]. The
change of the direction of waves propagation can be caused by the
influence of buoyancy [7].

Most of the investigations have been fulfilled for a sole liquid
layer with a free surface, i.e., in the framework of the one-layer
approach. Recently, Madruga et al. [15,16] studied the linear sta-
bility of two superposed horizontal liquid layers bounded by two
solid planes and subjected to a horizontal temperature gradient.
The analysis has revealed a variety of instability modes. The non-
linear wavy convective regimes in two-layer systems have been
described in [17].

In the investigations of convection in two-layer systems, it is
typically assumed that the normal components of the heat flux are
equal on both sides of the interface. However, there are various
physical phenomena which are characterized by a heat release or
heat consumption at the interface. Specifically, the interfacial heat
release accompanies an interfacial chemical reaction (see, e.g.,

[18]) and the evaporation [19].
The interfacial heating can be generated, e.g., by an infrared light

source. The infrared absorption bands of water and silicone fluids are
essentially different [20], therefore the light frequency can be chosen
in a way that one of the fluids is transparent, while the characteristic
length of the light absorption in another liquid is short.

Another possibility of the interfacial heating may be realized by
the use of the ultra-violet radiation: the process of photolysis of
hydrogen peroxide H O2 2 due to the radiation with a wavelength
lower than 400 nm, leads to the appearance of _OH radicals, ac-
companying by the reaction between silicone fluids and

_OH radicals with an interfacial heat extraction [21].
It is known that the presence of a constant, spatially uniform

heat release or heat consumption at the interface can lead to the
appearance of an oscillatory instability [22,23]. Oscillations in
[22,23] have been obtained in a two-layer system heated from
below. Nonlinear convective regimes in a two-layer system filling a
closed cavity with heat release at the interface have been studied
in [24]. The system was heated from the lateral wall.

Let us note that the theoretical predictions obtained for flows
in closed cavities cannot be automatically applied for the infinite
layers. For the observation of waves in a closed cavity a global
instability is needed, while in the case of periodic boundary con-
ditions one observes waves generated by a convective instability of
a parallel flow [25]. Also, it should be taken into account, that in
the presence of rigid lateral walls the basic flow is not parallel –
the lateral walls act as a stationary finite-amplitude perturbation
that can produce steady multicellular flow in the part of the cavity
and in the whole cavity [25].

In the present paper, the influence of the interfacial heat re-
lease and heat consumption on nonlinear convective regimes,
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developed under the joint action of buoyant and thermocapillary
effects in a laterally heated two-layer system with periodic
boundary conditions, has been investigated. Specific regimes of
traveling waves and modulated traveling waves have been ob-
tained. It is found that rather intensive heat sinks at the interface
can lead to the change of the direction of the waves' propagation.

The paper is organized as follows. In Section 2, the mathematical
formulation of the problem in the two-layer system is presented.
Numerical simulations of the finite-amplitude convective regimes are
considered in Section 3. Section 4 contains some concluding remarks.

2. Formulation of the problem

2.1. Equations and boundary conditions

We consider a system of two horizontal layers of immiscible
viscous fluids with different physical properties (see Fig. 1). The
variables referring to the top layer are marked by subscript 1, and
the variables referring to the bottom layer are marked by subscript
2. The system is bounded from above and from below by two rigid
plates, =z a1 and = −z a2. A constant temperature gradient is
imposed in the direction of the axis x: ( )T x y a t, , ,1 1
= ( − ) = − + >T x y a t Ax A, , , const, 0.2 2 A constant heat release of
the rate Q0 (Q0 may be positive or negative) is set on the interface.

It is assumed that the interfacial tension s decreases linearly
with an increase of the temperature: σ σ α= − T0 , where α > 0.

Let us introduce the following notation:

ρ ρ ρ ν ν ν η η η κ κ κ

χ χ χ β β β

= = = =
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/ , / , / , / ,

/ , / , / .
1 2 1 2 1 2 1 2
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Here ρm, νm, ηm, κm, χm, βm and am are, respectively, density, kinematic
and dynamic viscosity, heat conductivity, thermal diffusivity, thermal
expansion coefficient and the thickness of the m-th layer ( = )m 1, 2 .
As the units of length, time, velocity, pressure and temperature we
choose a1, ν ν ρ νa a a/ , / , /1

2
1 1 1 1 1

2
1
2 and Aa1, respectively.

The nonlinear equations of convection in the framework of the
Boussinesq approximation for both fluids have the following form
(see [1]):
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Here, → = ( )v v v v, ,m mx my mz is the velocity vector, Tm is the tem-
perature and pm is the pressure in the m-th fluid; γ→ is the unit
vector directed upwards; β= = = = =b c d e b1; 1/ ,1 1 1 1 2

ν χ ρ β ν= = = =c d e G g Aa1/ , 1/ , ; /2 2 2 1 1
4

1
2 is the Grashof number and

ν χ=P /1 1 is the Prandtl number for the liquid in layer 1. The con-
ditions on the rigid horizontal boundaries are:

= → = = − ( )z v T T x1: 0; , 21 1 0

= − → = = − ( )z a v T T x: 0; , 32 2 0

where T0 is constant.
We assume that the interface is flat, and it is located at z¼0.
The boundary conditions on the interface include relations for

the tangential stresses:
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the continuity of the velocity field:

→ = → ( )v v ; 51 2

the continuity of the temperature field:

= ( )T T ; 61 2

and the continuity of the heat flux normal components:
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Here αθ η χ=M a /1 1 1 is the Marangoni number, which is the basic
non-dimensional parameter characterizing the thermocapillary
effect, and β ν κ=G g Q a /Q 1 0 1

4
1
2

1 is the modified Grashof number
determined by the interfacial heat release. Let us note that in [17]

=G 0Q .
The boundary-value problem (1)–(7) contains nine thermo-

physical (M, G, P, GQ, ν, η, κ, χ, β) and two geometrical (a, L) non-
dimensional parameters, where =L l a/ 1.

2.2. Nonlinear approach

In order to investigate the flow regimes generated by the
convective instabilities, we perform nonlinear simulations of two-
dimensional flows ( = ( = )v m0 1, 2my ; the fields of physical vari-
ables do not depend on y). In this case, we can introduce the
stream function ψ
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Eliminating the pressure and defining the vorticity

ϕ = ∂
∂

− ∂
∂

v
x

v
z

,m
mz mx

we can rewrite the boundary value problem (1)–(7) in terms of
variables ϕ ψ,m m, and Tm (see [1]). The calculations have been
performed in a finite region ≤ ≤ − ≤ ≤x L a z0 , 1 with periodic
boundary conditions on the lateral walls:
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The boundary value problem is integrated in time with some
initial conditions for ψm and Tm ( = )m 1, 2 by means of a finite-
difference method. Equations and boundary conditions are ap-
proximated on a uniform mesh using a second order approxima-
tion for the spatial coordinates. The nonlinear equations are solved
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Fig. 1. Geometrical configuration of the two-layer system and coordinate axes.
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