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a b s t r a c t

Recently a transformation of variables has been used for an object in a Newtonian gravitational field that
linearizes the equations of motion. This transformation has been found useful for unconstrained orbital
rendezvous and transfer problems.

This paper examines the geometry of these transformed variables for planar orbital transfer pro-
blems. The transformed initial, final, and transfer orbits are either points or circles with centers on a
horizontal axis. Applied velocity impulses cause horizontal jumps between these points or centers and
vertical jumps between points on the circular arcs. These transformed orbits are shown to have an
equivalence to the well-known classical hodographs. Because of this equivalence the orbit equation can
be represented by another set of linear equations in terms of the radial velocity, transverse velocity, and
the reciprocal of the angular momentum.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A recent approach to impulsive rendezvous and transfer pro-
blems that linearizes the equations of motion of a spacecraft be-
tween impulses has been applied to problems of optimal rendez-
vous [1] and orbit transfer [2] in a plane. Although this linearizing
transformation is well known in the literature of the two-body
problem, it has only recently been applied to orbit transfer or
rendezvous. This is an example of rigorous linearization as dis-
cussed by Junkins and Singla [3] and extends and develops the (1/
r) transformation.

The first objective of this paper is to show that the linearizing
transformation employed in this approach is not just a mathe-
matical abstraction, but can be useful in establishing a new geo-
metry of orbits and transfers that may be of use in visualizing
orbital transfer and rendezvous. The second objective is to show
that this geometry may provide an alternate way of calculating Δv
requirements for certain transfers. This is demonstrated for some
well-known transfers, the Hohmann transfer [4] and the bi-ellip-
tical transfer [5–7]. The third objective is to show that the geo-
metry of this transformation relates to two classical hodographs
[8,9], one in a rotating coordinate frame and the other in an in-
ertial coordinate frame. The former leads to another set of linear
differential equations that describe the motion in terms of the
velocity in the rotating frame and the reciprocal of the orbital
angular momentum.

The organization of the paper is as follows. The following sec-
tion presents the linearizing transformation. The next section
presents the geometry of the boundary orbits and the transfer
orbits. With this geometry, circular orbits become fixed points,
elliptical orbits become circles, parabolic orbits become circles
with one point missing on a vertical axis, and hyperbolic orbits are
circular arcs on the right side of a vertical axis. Several examples
are presented including the well-known Hohmann and bi-elliptic
transfers. A general example is also presented that includes radial
components in Δv . It is demonstrated that the geometry of orbital
transfers with transverse Δv differs from those having radial
components. Finally we show how this geometry relates to the
two classical hodographs and present another equivalent set of
linear differential equations that describe the motion.

2. The impulse-free model

2.1. Changing the independent variable

The equation of motion of a spacecraft in an inverse-square
gravitational field is

μ¨ = − ( )r
r r 13

where r is the position vector of a spacecraft measured from a
center of attraction, = | | = ( · )r r r r 1/2 is its magnitude, μ is the
product of the universal gravitational constant and a mass at the
center of attraction, and the dot indicates differentiation with re-
spect to time t. In polar coordinates θ( )r, this equation becomes
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θ θ¨ + ̇ ̇ = ( )r r2 0 2

θ μ¨ − ̇ = − ( )r r
r

. 3
2

2

Multiplying Eq. (2) by r and integrating we obtain

θ ̇ = ( )r h 42

where the constant h is the angular momentum of the spacecraft
orbit. Using Eq. (4) to change the independent variable from t to θ
and using a prime to denote differentiation with respect to θ the
equations of motion can written as

θ θ θ θ μ θ( ) ″( ) − ′( ) = ( ) − ( ) ( )r r r r r h2 / 52 2 3 2

θ′( ) = ( )h 0. 6

These equations will be considered over a closed interval
θ θ θ≤ ≤ f0 .

2.2. Linearizing the equations

We shall employ a change of variable θ( ) =
θ( )y

r
1 used in recent

work [1]. Based on this transformation we assign the new vari-
ables =y y1 , = − ′y y2 , = μy

h3 2 and obtain the equivalent set of

linear equations

′ = − ( )y y 71 2

′ = − ( )y y y 82 1 3

′ = ( )y 0. 93

In previous work [1] we defined ′ =y y1 2. We find that Eq. (7)
used here is more convenient in the geometric work that follows
in the next section. The linearity of these equations is a useful
feature. They can be written as

′ = ( )Ay y 10

where = ( )y y yy , , T
1 2 3 and

=
−

−
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟A

0 1 0
1 0 1
0 0 0

.
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Replacing the fourth order system (2) and (3) by the third order
system (7)–(9) loses information regarding the time t, however
behavior with respect to time is not a part of the investigation of
this paper.

2.3. State transition matrix

A fundamental matrix solution

Φ θ
θ θ θ
θ θ θ( ) =

− −
−

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

cos sin 1 cos
sin cos sin

0 0 1 12

associated with Eq. (10) is seen to satisfy

Φ θ Φ θ Φ′( ) = ( ) ( ) = ( )A I, 0 13

where I is the 3�3 identity matrix. For arbitrary θ1, θ θ θ∈ [ ], f2 0

this defines a state-transition matrix Φ θ θ( − )2 1 satisfying

θ Φ θ θ θ( ) = ( − ) ( ) ( )y y , 142 2 1 1

consequently an impulse-free trajectory is propagated by

θ Φ θ θ θ( ) = ( − ) ( ) ( )y y 150 0

for any θ θ θ∈ [ ], f0 . Actually (13) and (14) are independent of the
end values θ0 and θf, thus (14) is valid for any real values of θ1 and
θ2. We can therefore let Φ θ θ= ( − ) ( )c y0 0 0 and using properties of
a fundamental matrix solution, an orbit through θ( )y 0 can be de-
scribed as

Φ θ θ( − ) ( ) = ( )y c 160

for any real value of θ.
At any value of θ the velocity of the spacecraft is

θ= ( ) = ( ̇ )̇ ( )θv v r rv , , . 17r
T T

In terms of the original variables the transformed variables are

= ( )y
r
1

181

=
̇

( )y
r
h 192

μ μ= =
( )θ

y
h r v

.
203 2 2 2

It can be observed that all three transformed variables are di-
mensionally the same. Values of the transformed variables at θ0
and θf are obvious from those of the original variables at θ0 and θf
respectively.

3. Geometry of the transformed variables

Now we describe the geometry of transformed Keplerian orbits
in the plane.

3.1. Circular arc (initial orbit)

We let θ θ ϕ¯ = − where ϕ is a constant. Using Eq. (16) we seek a
transfer orbit Φ θ θ( − ¯) ( ¯) =y c1 that connects the initial orbit
Φ θ θ( − ¯) ( ¯) =y c0 to the terminal orbit Φ θ θ( − ¯) ( ¯) =y cf .

Letting = ( )c c cc , , T
0 10 20 30 and replacing θ by θ− ¯ in Eq. (12)

yields the equations

θ θ θ

θ θ θ

¯ + ¯ + ( − ¯)

= − ¯ + ¯ + ¯ =

= ( )

y y y

c y y y c

y c

cos sin 1 cos

sin cos sin

. 21

1 2 3

10 1 2 3 20

3 30

Since y3 is constant we shall consider the transformed orbit as
described by y1 and y2. Solving for y1 and y2,

θ θ

θ θ

= ( − ) ¯ − ¯ +

= ¯ + ( − ) ¯ ( )

y c c c c

y c c c

cos sin

cos sin . 22
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Adding the squares of −y c1 30 and y2, we obtain

( − ) + = ( )y c y d 231 30
2

2
2

0
2

where

= [( − ) + ] ( )d c c c . 240 10 30
2

20
2 1/2

This is a circle having center ( )c , 030 and radius d0.

3.2. Circular arcs (terminal and transfer orbits)

Setting = ( )c c cc , ,f f f f
T

1 2 3 the terminal orbit satisfies
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