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a b s t r a c t

Satellite equipped with purely magnetic attitude control system is considered. Sliding
mode control is used to achieve three-axis satellite attitude. Underactuation problem is
solved for transient motion. Necessary attitude is acquired by proper sliding manifold
construction. Satellite motion on the manifold is executed with magnetic control system.
One manifold construction approach is proposed and discussed. Numerical examples are
provided.

& 2016 Published by Elsevier Ltd. on behalf of IAA.

1. Introduction

The paper is devoted to three-axis stabilization of satellites
using magnetorquers only. The satellite is underactuated since
control torque is always perpendicular to the geomagnetic
induction vector. This vector rotation allows accessible angular
trajectory to be constructed. Sliding control [1,2] is used in this
paper to obtain the trajectory mentioned above. Sliding con-
trol was already proposed for attitude stabilization of satellites
[3–5] including pure magnetic control [6,7]. This scheme was
also implemented for underactuated formation flying system
[8]. Constant sliding manifold parameters restrict these works
application for magnetic attitude control. This paper focuses
on acquiring variable manifold parameters. This allows the
sliding manifold to change in such a way that satellite angular
path may be achieved using magnetorquers only.

2. Problem statement

Three right-handed reference frames are used. Inertial
frame OaY1Y2Y3 bases on Earth’s axis OaY3 and ascending
node of Keplerian orbit OaY1. Orbital frame OX1X2X3 bases

on radius-vector of the satellite OX3 and orbital normal
OX2. Bound reference frame Ox1x2� 3 is tied to the prin-
cipal axes of inertia of the satellite.

Satellite attitude in inertial or orbital frame is described
using Euler equations and kinematic relations based on
quaternions and direction cosine matrices. Satellite state
vector comprises angular velocityω and quaternion q; q0

� �
or direction cosine matrix A and its components aij.
Dynamical equations of the satellite with inertia tensor J
are written as

J _ωþω� Jω¼MþMcntrlþMdist ð1Þ

where ω is relative or absolute angular velocity (with
respect to orbital or inertial frame), M is accordingly
defined as M¼MgrþMrel or M¼Mgr where

Mrel ¼ �JWAωorb�ωrel � JAωorb�Aωorb � J ωrelþAωorbð Þ;

ωorb is the orbital reference frame angular velocity, ωrel is
the satellite angular velocity relative to the orbital frame,
Mcntrl ¼m� B is a control torque, Mgr is the gravitational
torque (disturbing torque taken into account by control),
Mdist is a disturbance unaccounted in control, W is a
skew-symmetric matrix of angular velocity used for
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matrix-based kinematics

_A¼WA; W¼
0 ω3 �ω2

�ω3 0 ω1

ω2 �ω1 0

0
B@

1
CA ð2Þ

3. Control construction

Sliding control is designed in two steps. First sliding
manifold x ω;A; tð Þ is constructed in phase space. Satellite
desired motion should satisfy x¼ 0: the satellite moves
along the manifold. The manifold is constructed in such a
way that attitude ω¼ 0, A¼ I is asymptotically stable (I is
the identity matrix). Typical sliding manifold for satellite
angular motion is

x¼ λωþΛ ω; S; tð ÞS¼ 0

where Λ is a positive-defined matrix and λ is a positive
value. The scalar function λ characterizes damping control
part. It may be substituted with matrix λ to allow different
gains for each bound frame axis. This may be useful for
satellite with particular dynamical configuration, e.g. long
cylinder or flat disk. These cases are beyond the scope of
this paper. Matrix Λ characterizes positional control part.
Vector S characterizes deviation from necessary attitude. It
is defined in the same way as the one used in PD-
controller [9],

S¼ a23�a32 a31�a13 a12�a21
� �T ð3Þ
Control torque should provide motion along the sliding

manifold (the second step in control construction). Sliding
manifold should be chosen in such a way that control
torque is perpendicular to the geomagnetic induction
vector. Suppose that control ensures motion along the
manifold according to the equation

_x¼ � J�1Px ð4Þ
where P is a positive-defined matrix. It represents the
time-response of control, e.g. time necessary for the
satellite to reach sliding manifold. Taking into account
equations of motion rewrite (4) as

_λJωþλJ _ωþ J _ΛSþ JΛ_S¼ �λPω�PΛS:

_S is found using (3) and (2). Taking into account
dynamical Eq. (1) we obtain

λm� B¼ � _λJωþλ ω� Jω�Mð Þ
� _ΛJS�Λ J_SþPS

� �
�λPω ð5Þ

Magnetorquers dipole moment is found from (5).
Damping coefficient λ is considered to be known constant.
Matrix Λ is considered to be symmetric. The problem is to
find matrix Λ and its derivative. Iterative approach is
considered below.

Matrix Λ derivative is written as

_Λ¼ Λ kþ1ð Þ�Λ kð Þ� �
=Δt

where Δt is control implementation step. Suppose we
know satellite attitude, angular velocity and geomagnetic
induction vector for kþ1 step and previous matrix Λ kð Þ.

Our purpose is to find Λ kþ1ð Þ. Substituting approximation
into (5) we obtain

λΔtm� B¼ � _λJωþλ ω� Jω�Mð Þ�Λ J_SþPS
� �

�λPω
� �

Δt

�Λ kþ1ð ÞJSþΛJS ð6Þ
Here all indices except the ones in Λ kþ1ð Þ are omitted.

Introduce notations
a¼ � _λJωþλ ω� Jω�Mð Þ�Λ J_SþPS

� �
�λPω

� �
ΔtþΛJS,

b¼ �JS, d¼ λΔtB and rewrite (6) as

aþΛ kþ1ð Þb¼m� d ð7Þ
Set the new reference frame using basis vectors

e1 ¼ d= d
�� ��; e3 ¼ d� b= d� b

�� ��; e2 ¼ e3 � e1

Scalar product of (7) and d is

Λ kþ1ð Þb� �
d¼ �ad

Taking into account d¼ d1;0;0ð ÞT and b¼ b1; b2;0ð ÞT in
the new basis we get

Λ11 kþ1ð Þb1þΛ12 kþ1ð Þb2 ¼ �a1 ð8Þ
Matrix Λ kþ1ð Þ construction is performed in a few

steps. First Λ11 kþ1ð Þ40 should be chosen. For example
Λ11 kþ1ð Þ ¼Λ11 kð Þ. Then using (8)

Λ12 kþ1ð Þ ¼Λ21 kþ1ð Þ ¼ �a1�Λ11 kþ1ð Þb1
� �

=b2

Since Λ is a positive-defined matrix Λ22 kþ1ð Þ should
satisfy

Λ11 kþ1ð ÞΛ22 kþ1ð Þ�Λ2
12 kþ1ð Þ40 ð9Þ

For example Λ22 kþ1ð Þ ¼Λ0þΛ2
12 kþ1ð Þ=Λ11 kþ1ð Þ, Λ0 is

some constant value. It characterizes positional part con-
tribution in control. However if Λ22 kð Þ satisfies (9) the pre-
vious step value may be used. Finally Λ33 kþ1ð Þ ¼Λ33 kð Þ.
Matrix Λ kþ1ð Þ is then transformed to the bound frame.
Expression (7) is used to find control torque and dipole
moment. First step initialization is Λ kþ1ð Þ ¼Λ kð Þ ¼Λ0I.

Proposed control cannot be used in the neighborhood
of necessary attitude since b1 and b2 are both close to zero.
To mitigate this problem element Λ12 kþ1ð Þ is constructed
according to

Λ12 kþ1ð Þ ¼ � a1þΛ11 kþ1ð Þb1
� �

= b2þδb2
� �

where δb2 is a small positive constant. This artificial error
leads to slight discrepancy between control torque direc-
tion and plane perpendicular to the geomagnetic induc-
tion vector. Control torque is projected on this plane to
construct dipole moment. Sliding control is designed to
acquire, not to maintain necessary attitude. The approach
itself is aimed at “sliding” to the vicinity of necessary
attitude. It cannot handle disturbance term along geo-
magnetic induction vector effectively and also suffers from
artificial error due to δb2.

4. Numerical examples

Control implementation involves choosing coefficient λ,
positional control contribution Λ0 and matrix P. These values
depend on expected magnetorquers dipole moment value
and relation between damping and positional control parts.
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