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Thin-walled conical and cylindrical shells subjected to axial compression often show a snap-back 
response in the presence of buckling. Newton iterations based path-following methods cannot trace 
reliably the snap-back response due to the extremely sharp turning angle near the limit point, and 
the original Koiter–Newton method also meets difficulties to achieve a complete post-buckling response 
beyond the limit point. In this paper, the improved Koiter–Newton method is proposed to trace the post-
buckling path of cylinders and cones, in the framework of the reduced-order modeling technique. The 
polynomial homotopy continuation (PHC) method is used to solve the lower-order nonlinear reduced 
order model reliably and efficiently. The simplified Green–Lagrange (SGL) kinematics which consider the 
stress redistribution after buckling are implemented into the construction of the reduced order model 
to produce accurate results for curved shells. The numerical results presented reveal that the improved 
method is a robust and efficient technology to achieve the entire nonlinear response for the snap-back 
case.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thin-walled conical and cylindrical shells are commonly used as 
primary components in weight-critical structure engineering, such 
as aircrafts and rockets, due to the high specific strength and stiff-
ness [1–3]. Their load-carrying capabilities are often determined 
by the buckling loads which may be much lower than the failure 
loads of materials. These shell type structures, which exhibit an 
unstable post-buckling behaviour, are highly sensitive to the initial 
imperfections, especially to the geometric imperfection [4].

Nonlinear structural analysis based on a path-following tech-
nique is commonly used to trace the response curve and to pre-
dict the load-carrying capacity of shell structures in the presence 
of buckling [2,5]. Snap-through and snap-back responses are two 
main phenomenons usually associated with the buckling of shell 
structures [6]. Some variants of the classical Newton method, i.e. 
the arc-length method [7] and norm flow method [8], have been 
proved to deal with the snap-through case very well. However, the 
above methods encounter difficulties with a snap-back response 
of cylindrical shells [9], where extremely sharp turning angles are 
present [3,5,10]. A significant reduction of the incremental step 
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size is required to distinguish properly the two closely spaced path 
segments near the limit point [5,11]. When instabilities are local-
ized, there will be a local transfer of strain energy from one part 
of the model to neighboring parts which may prevent the success 
of global solution methods. This class of problems must be solved 
either dynamically or with the aid of artificial damping. Thus, a 
combination of the displacement control and a damping factor is 
commonly used to pass the limit point of a snap-back response 
[5,10].

The Koiter–Newton (KN) method [12,13] has been proposed 
based on the reduced-order modelling technique to trace the non-
linear equilibrium path in a stepwise manner. In each step, the 
method combines a prediction phase using a nonlinear reduced 
order model (ROM) based on Koiter asymptotic analysis [14–16]
with a Newton iteration based correction procedure, thus allowing 
the algorithm to use fairly large step sizes. In the original Koiter–
Newton method, the classical arc-length method is used to solve 
the nonlinear system of equations associated with the reduced 
order model. Instead of solving a large-scale nonlinear system gen-
erated from the full finite element model [17], the lower-order 
reduced order model can provide a much more reliable solu-
tion to pass the extremely sharp turning angle in the snap-back 
case. However, the path-following performance is still very sensi-
tive to the solution parameters related to the arc-length method 
and the method meets difficulties to trace the post-buckling path 
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that is far beyond the limit point. Actually, the nonlinear alge-
braic equations, that is the reduced order model, can be expressed 
as polynomial equations. Thus, the polynomial homotopy contin-
uation (PHC) method [18,19] can be used as a reliable and ef-
ficient tool to solve the lower-order reduced order model. The 
construction of the reduced order model requires derivatives of 
the strain energy with respect to the degrees of freedom up to 
the fourth order, which is two orders more than traditionally 
needed for a Newton based nonlinear finite element technique. 
The von Kármán kinematics have been used in the finite element 
implementation of the original Koiter–Newton method [13]. The 
nonlinear in-plane rotation terms are neglected to facilitate the 
high order derivatives of the strain energy. However, these terms 
might be negligible for flat plate situations but they indeed play 
a major role in structures consisting of assembly of flat plates or 
curved shells. An alternative way to alleviate the shortcoming is 
to use the simplified Green–Lagrange (SGL) strain tensor which 
has been successfully implemented in the former Koiter reduction 
method [16].

The contribution of this paper distinguishes significantly from 
previous publications [6,12,13,20] in the improvement of the orig-
inal Koiter–Newton method to be more applicable for the snap-
back case. The lower-order reduced order model is solved using the 
polynomial homotopy continuation method, to trace reliably the 
entire snap-back response. The simplified Green–Lagrange kine-
matics are implemented into the Koiter–Newton method to obtain 
a more accurate results for the curved shells. We carefully test 
the improved Koiter–Newton method for the snap-back behaviour 
of thin-walled cylindrical and conical shells to reveal the perfor-
mance of the method for extremely sharp turning angles at the 
limit point. We demonstrate that the method is capable to handle 
these numerically severe test cases reliably and accurate and thus 
outperforms most of the state-of-the-art solution methods.

The rest of the paper is organized as follows: a brief introduc-
tion of the shell theory and the SGL strain used in this study 
is given in section 2. The Koiter–Newton method and the PHC 
method used to solve the reduced order model are presented in 
section 3. Numerical examples of cylinders and cones used to 
demonstrate the success of the method are provided in section 4. 
We summarize the paper and draw conclusions in section 5.

2. Shell theory based on simplified SGL strain

Based on the classical plate theory (Kirchhoff–Love hypothesis), 
the three displacement components (u, v, w) of a thin plate are 
expressed as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(x, y, z) = u0(x, y) − z
∂ w

∂x

v(x, y, z) = v0(x, y) − z
∂ w

∂ y

w(x, y) = w0(x, y)

, (1)

where u0(x, y), v0(x, y) and w0(x, y) are the displacement com-
ponents related to the mid-plane of the plate.

The total strain vector ε for the plate is:

ε = εm + zκ, (2)

where εm and κ are the in-plane strain vector of the mid-plane 
and the curvature vector of the plane.

To consider the geometrical nonlinearities of the plate, the sim-
plified Green–Lagrange strain kinematics are used for the mid-
plane strain εm , as given by:

εm = {
εx εy εxy

}
, (3)

where
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The simplified Green–Lagrange strain kinematics include some 
nonlinear in-plane rotation terms, which consider the stress redis-
tribution in the post-buckling deformation.

The constitutive relationship of the plate is written as:{
N

M

}
=

[
A B

B D

]{
εm

κ

}
, (5)

where N and M are the membrane force vector and the bend-
ing moment vector, respectively, and matrices A, B and D are 
the membrane stiffness, membrane-bending coupling stiffness and 
bending stiffness, respectively. For the isotropic shell, the coupling 
stiffness B equals to be 0. For laminated composite plate, the ma-
terial stiffness A, B and D can be calculated using the classical 
lamination theory.

3. The improved Koiter–Newton method

In the following we briefly present the basic ideas and princi-
ples of the Koiter–Newton method. In particular, we introduce the 
polynomial homotopy continuation method used to solve the re-
duced order model. For a detailed description of the theory, we 
point the reader to work [12,13,18].

3.1. Construction of the reduced order model

The Koiter–Newton method is based on a step by step proce-
dure to trace the equilibrium path of the deforming structure, that 
is similar to classical path-following techniques [21]. The unique 
properties and algorithmic differences compared to standard tech-
nologies are given in the following with the help of Figs. 1 and 2. 
In addition, the red contents written in Fig. 1 are the main im-
provements made in this study, compared to the original KN 
method.

Starting from a known nominal equilibrium state (q0, λ0), usu-
ally the un-deformed configuration of a structure, the equilibrium 
state is represented by a set of nonlinear algebraic equations:

fint(q) = λfext (6)

where fint and fext are the internal force vector and external force 
vector, respectively, and λ is the load parameter, and q is the dis-
placement vector.

The corresponding reduced order model at this known state is 
constructed within the framework of the Koiter–Newton method, 
to be:

L̄(ξ) + Q̄(ξ , ξ) + C̄(ξ , ξ , ξ) = φ (7)

where L, Q and C are still to be determined linear, quadratic and 
cubic forms of the approximated load amplitudes φ . These forms 
can also be represented by a two-dimensional tensor L, a three-
dimensional tensor Q and a four-dimensional tensor C of order 
(1 + m), respectively, where m is the number of the closely-spaced 
buckling modes of the structure. ξ are generalized displacements 
or perturbation parameters.

The construction of the reduced order model (7) is illustrated 
in Fig. 1. The basic idea involves a modification of Koiter’s asymp-
totic theory to make it applicable already from the unloaded state. 
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