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a b s t r a c t

In order to study the behavior of resonant piston-mode resonance in a moonpool at low forward/incoming
current speed, we performed a series of experiments and compared them to a nonlinear hybrid method
which couples potential and viscous flow. The setting is a 2D box section with a moonpool gap in the
middle, forced to oscillate in heave with a given amplitude and frequency, while simultaneously travelling
at a given constant forward speed. The numerical method couples a Navier–Stokes (CFD) solver using the
Finite Volume Method (FVM), with a potential flow method using the Harmonic Polynomial Cell method
(HPC). It is found that the moonpool behavior is slightly reduced with a low forward velocity, and the
reduction is dependent on the heave forcing amplitude.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Marine operations from ships often involve moonpools to lower
or lift devices such as subsea modules and ROVs. Resonant piston-
mode resonance can be excited by the relative vertical ship motions
in the neighborhood of the moonpool and cause strong amplifi-
cation of the dynamic wave elevation in the moonpool. The fact
that the resonant piston-mode frequency is typically in the vicin-
ity of the heave natural frequency of the ship limits possible sea
states for a marine operation. The stronger the shed vorticity due
to flow separation at the moonpool entrance and inside the moon-
pool is, the larger the damping is, and the smaller the maximum
resonant piston-mode wave amplitude is for a given ship and
main moonpool geometrical parameters in a given sea condition.
It is of practical interest to know the free-surface elevation in the
moonpool and the ambient flow velocities and accelerations in the
vicinity of the moonpool in order to assess the loads on lifted or
lowered devices through the moonpool.

Several authors have studied the importance of including vis-
cosity and flow separation in the resonant moonpool problem,
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due to the fact that a potential flow solution will greatly over-
predict the piston-mode amplitude at resonance for sharp-edged
lower entrances of the moonpool. Faltinsen et al. [5] investi-
gated forced heave of a two-dimensional moonpool section using
a domain-decomposition (DD) scheme within the framework of
linear potential flow theory. Their DD scheme led to a system of
integral equations on the transmission interfaces that solved for the
piston-mode natural frequency and the steady-state piston-mode
amplitude. To improve the potential flow models some authors
have tried to fit an artificial, empirically based damping to the
free-surface condition inside the moonpool. This is known as a
numerical damping lid. Lu et al. [15] investigated the possibil-
ity of finding this damping coefficient based on experimental and
CFD results. The damping coefficient was in their work observed
not to be sensitive to the variation of moonpool gap width, body
draft, breadth-to-draft ratio and body number. Their focus was
on wave forces, where Lu et al. [16] used the same setup with
focus on the wave elevation in the moonpool. It is not known
when using a numerical damping lid how well the flow in the
vicinity of the moonpool is predicted. Lu and Chen [14] inves-
tigated what contributed to the dissipation of the piston-mode
amplitude generated from incoming waves. Both the dissipation
from the boundary layers inside the moonpool gap, and in which
fluid areas around the moonpool gap the vorticity dissipation was
largest.
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Fig. 1. Domain overview with the HPC domain close to the free surface (�pot) and the FVM domain around the ship edges and down to the bottom of the tank (�CFD). Notice
how the grid in the HPC domain follows the free surface.

Kristiansen and Faltinsen [10,11] showed how a hybrid
method based on a linear potential solver coupled to a viscous
Navier–Stokes (CFD) solver could be used to predict the piston-
mode in a 2D moonpool under forced heave oscillations. The
viscous domain covered the inlet of the moonpool where the vortic-
ity would be shed, and later advected before dissipating. The rest of
the domain, including the free surface was discretized using linear
potential flow theory, where it was solved for the linear acceler-
ation potential  . A direct coupling between  in the potential
domain and the pressure p in the viscous domain was used. This
guaranteed continuity in pressure and normal velocity across the
intersection between the two domains. Both domains where solved
using a Finite Volume Method (FVM) with second order accuracy
in space. Their thought is that potential flow is best at propagat-
ing waves, and that the viscous domain can incorporate vorticity
separated from the edges. The method is extremely fast relative
to solving the complete viscous flow problem with nonlinear free-
surface conditions by means of a CFD solver with, for instance, the
Volume of Fluid (VOF) method for capturing the free surface. Later,
Kristiansen et al. [12] demonstrated that the method gave good
results also for the 3D moonpool problem, with modest computa-
tional times.

In the previously described works, there was no current or
forward velocity. Fredriksen et al. [7] developed the method
introduced by Kristiansen and Faltinsen [11] in order to account
for this. A linear perturbation of the free surface is adequate to cap-
ture the moonpool flow at zero forward velocity and no incoming
current. However, a linear perturbation method is insufficient to
capture the wave-current interaction. Here in our hybrid coupling
method a higher order perturbation method is unsuitable since a
single unknown (pressure p in the viscous domain) can not be cou-
pled to several unknown velocity potentials in the potential flow
domain. Fredriksen et al. [7] used nonlinear free-surface conditions
in a non-rotating body-fixed coordinate system to overcome this
problem. The body-boundary conditions are then exactly satisfied,
but a new complication with the free surface is introduced. The
matrix system now needs to be updated each time-step to satisfy
the nonlinear free-surface conditions on its exact position. The cur-
rent work is a further development of this nonlinear hybrid method,
where we use the recently developed Harmonic Polynomial Cell
(HPC) method in the potential domain instead of the FVM.

The HPC method was first presented for solutions of the 2D
Laplace equation in [19], where both computational speed and
accuracy were compared against boundary element methods and
other field solver methods. It was later verified in 2D with wave
propagation over a submerged trapezoidal bar, see [20]. The first
extension to 3D was done by Shao and Faltinsen [21], where again,
its high efficiency and accuracy was compared with other solvers.
Forces on a bottom-mounted free surface piercing vertical circu-
lar cylinder in nonlinear regular waves were studied. Nonlinear
forces describing up to the fourth harmonic was computed and
compared against other numerical results and experimental values
with satisfactory results.

There exist several other strategies for coupling viscous flow and
potential flow models. It can simply be done by using a potential
flow model to generate initial conditions to a viscous flow model.

An example of this is by using a potential flow model to simulate
a wave breaking up to when the free surface intersects itself, then
use the potential flow results to generate initial conditions to a
viscous flow simulation, see [9]. A stronger coupling strategy which
is similar to ours is summarized in Ref. [8]. Basically they solve
a potential flow problem on a large domain using the boundary
element method (BEM). On a smaller viscous CFD domain, the NS-
equation is split in an inviscid and a viscous part, u = uI + uV and
p = pI + pV. Since the inviscid part is known from the potential flow
BEM calculation, the NS-equation can be solved for uV and pV. They
use this strategy to solve a sediment transport model, where the
viscous CFD domain is located close to the sea bottom.

We start by presenting the numerical method in Section 2, then
give an overview of the experimental setup in Section 3. The results
are given and discussed in Section 4. At the end a conclusion about
the present work will is given in Section 5.

2. Numerical approach

We present a coupling strategy between a potential flow outer
domain with a viscous flow inner domain. Only the water domain
is considered (see Fig. 1). The chosen method for the potential
flow domain is based on the HPC method and the flow in the
inner viscous domain is solved based on a laminar flow assumption
using FVM. The governing equations will be solved in a body-fixed
non-rotating coordinate system, with exact boundary conditions.
The numerical method is then capable of simulating free-surface
flows with flow separation from free-surface piercing structures.
Only flow separation from sharp corners will be considered which
implies that the details of the boundary-layer flow are not needed.
We will here consider the case with forced heave oscillations of a
2D moonpool with low forward velocity. The Earth-fixed coordi-
nate system is here defined fixed in the initial position of the body,
with z = 0 on the mean free surface and the z-axis positive upwards.
Correspondingly the body-fixed coordinate system is following the
motion of the body in heave and sway.

We will solve the Laplace equation for the absolute velocity
potential ϕ in the potential flow domain, which is valid for irro-
tational flow of an incompressible and inviscid fluid, i.e.

∇2ϕ = 0 in �pot. (1)

The absolute velocity is defined as u = ∇ ϕ. We will solve for the
absolute velocity potentialϕ in a body-fixed and non-rotating coor-
dinate system. In the CFD domain we will solve for the relative
velocity ur = (vr ,wr) in the same body-fixed non-rotating coordi-
nate system. The governing equations for mass and momentum
conservation in an incompressible, laminar viscous fluid flow in an
accelerated non-rotating coordinate system are given according to
Ref. [4] as

∇ · ur = 0 in �CFD (2)

dbur
dt

+ ur · ∇ur = − 1
�

∇p− gk + �∇2ur − a0 in �CFD, (3)

where dbur/dt means the time-differentiation for a fixed point in
the body-fixed coordinate system, (dvr/dt)j + (dwr/dt)k, i.e. we do
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