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A B S T R A C T

A stochastic second-order wave model is applied to assess the statistical properties of wave orbital veloc-
ity in random sea states below the water surface. Directional spreading effects as well as the dependency of
the water depth are investigated by means of a Monte-Carlo approach. Unlike for the surface elevation, sub-
harmonics dominate the second-order contribution to orbital velocity. We show that a notable set-down
occurs for the most energetic and steepest groups. This engenders a negative skewness in the temporal evo-
lution of the orbital velocity. A substantial deviation of the upper and lower tails of the probability density
function from the Gaussian distribution is noticed; velocities are faster below the wave trough and slower
below the wave crest when compared with linear theory predictions. Second-order nonlinearity effects
strengthen with reducing the water depth, while weaken with the broadening of the wave spectrum. The
results are confirmed by laboratory data. Corresponding experiments have been conducted in a large wave
basin taking into account the directionality of the wave field. As shown, laboratory data are in very good
agreement with the numerical prediction.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Accurate wave statistics is crucial to establish concise predictions
as well as realistic design values for wave heights and wave-induced
velocities. They can provide a good estimation on the air gap of fixed
and tension leg offshore platforms. Velocities, in particular, are the
primary input for wave-induced loads on surface and subsurface
structures Morison et al. (1950); Dean and Perlin (1986); Faltinsen
(1993); Dean and Dalrymple (2000). Nearshore, in a regime of finite
water depth, wave kinematics significantly affect sediment transport
processes Crawford and Hay (2001); Greenwood (2003); Myrhaug
et al. (2015).

Provided that waves are of small amplitude, i.e. assuming gen-
tle sloping, the nonlinear water wave problem can be linearised
and the irregular sea surface may then be reconstructed by a lin-
ear superposition of sinusoidal components Dean and Dalrymple
(2000). In statistical terms, this implies that waves can be consid-
ered as a stationary, ergodic and Gaussian random process. Assuming
the process to be narrow-banded, it is known that wave ampli-
tudes satisfy the Rayleigh distribution. However, wave steepness
is often too large for the linear theory to be valid in studying ocean
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waves in deep and coastal waters in a general framework. In terms
of current design practice, second-order nonlinear contributions are
applied to account for the mutual interaction between wave com-
ponents Forristall (2000). General second-order corrections to linear
solutions for the surface elevation g and velocity potential 0 are
given in Sharma and Dean (1981). Note that second-order quasi-
deterministic solutions (see for instance Boccotti (2000)) may be
more appropriate for particularly high amplitude waves.

With respect to the water surface elevation, second-order non-
linearity generates high-frequency bound modes (super-harmonics),
which make wave crests higher and sharper while troughs are
flatter and less deep compared to linear models. It also induces
low-frequency components (sub-harmonics), which produce a
set-down under the most energetic wave groups Forristall (2000);
Toffoli et al. (2007). Taking into account the fact that super-
harmonics induce a dominant contribution Toffoli et al. (2007), the
probability density function (p.d.f.) of the surface elevation is then
characterised by a positive skewness and substantial deviations of
the upper and lower tails from the Normal (Gaussian) distribu-
tion Forristall (2000); Tayfun (1980); Tayfun and Fedele (2007).
Deviations from Normality are reduced by directional spreading in
deep-water and enhanced in finite water depths Forristall (2000).

For the velocity potential, and consequently wave orbital veloci-
ties, second-order super- and sub-harmonics are of the same order
of magnitude nearby the mean water level. Nevertheless, below
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the surface, super-harmonics decay rapidly Dean and Perlin (1986),
while sub-harmonics retain a significant fraction of their energy
Dean and Perlin (1986); Baldock and Swan (1996); Ning et al. (2009);
Johannessen (2010). Consequently, sub-harmonics produce a gen-
eral increase of velocity below the troughs and decrease it below the
crests for the most energetic wave groups. This effect amplifies with
the distance from the surface Romolo et al. (2014). Song and Wu
(2000) noted, numerically, that the p.d.f. of orbital velocity becomes
negatively skewed with respect to the depth. This result, however,
is neither confirmed by laboratory experiments nor by field observa-
tions Battjes and Van Heteren (1980); Drennan et al. (1992); Sultan
and Hughes (1993); You (2009).

The effect of second-order nonlinear contribution on wave orbital
velocity still remains unclear. As an example, it is not straightforward
yet whether second-order variations to velocities are sufficiently
strong to induce deviations of the upper and lower tails of the
p.d.f. from the Gaussian distribution. Furthermore, the effect of wave
directionality (wave directional spreading) has not been properly
assessed yet.

The paper is structured as follows. First, we revisit the contribu-
tion of second-order nonlinearity on wave orbital velocities with a
stochastic second-order model Sharma and Dean (1981). A brief ana-
lytical discussion of the second-order interaction kernels and effects
on regular waves (both mono- and bi-chromatics) is discussed in the
next section. In the following Section 3 the stochastic model and its
initial conditions are presented. Results of Monte-Carlo simulations
for unidirectional and directional wave fields are assessed in order
to evaluate departures from the Gaussian distribution, with partic-
ular focus on extreme values, i.e. deviations of the lower and upper
tail of the distribution. A comparison with experimental velocity field
data, collected in a large directional basin in infinite and finite depth
conditions Toffoli et al. (2013), is also discussed. Final remarks and a
discussion with respect to the main reported results are presented in
the Conclusions.

2. Second-order wave orbital velocity

2.1. Interaction kernels

Taking into account the second-order of nonlinearity, the velocity
potential can be written as a sum of the linear solution of the Euler
equations for surface gravity water waves (0(1)) and a second-order
correction consisting of super- and sub-harmonics, denoted by 0(2+)

and 0(2−), respectively Sharma and Dean (1981). Under the hypothe-
sis of inviscid fluid and irrotational potential flow, the linear velocity
potential of a finite number of M modes, which correspond to num-
ber of elements used in the numerical discretisation, in a water of
arbitrary depth is

0(1) =
M∑

i=1
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yi

cosh[ki(d + z)]
cosh[kid]

sinHi (1)

where g is the gravitational acceleration, d the water depth, z the ver-
tical coordinate (origin z = 0 at the mean water level and positive
upwards), ai the amplitude of the i−th wave component, yi the con-
current angular frequency and ki = |ki| the concurrent wavenumber.
Hi = ki • x − yit + ei where ei denotes the arbitrary phase.

The second-order correction is described as Sharma and Dean
(1981)
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0 are the positive and negative kernels:
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Ri = kitanh(kid), k±
ij = |ki ± kj| and k = (kx, ky).

The sums in Eq. (2) are computed directly, no de-aliasing is
required. Wave orbital velocities are then calculated as the partial
derivative of the velocity potential:

u =
∂0

∂x
; v =

∂0

∂y
; and w =

∂0

∂z
(6)

with u and v the horizontal components and w the vertical
component.

The kernel functions for two interacting components with wave
numbers k1 and k2 are presented in Fig. 1 for deep (k1d → ∞) and
finite (k1d = 1.29) water depth conditions. A key feature for the lim-
iting case k1d → ∞ is a non-existent contribution of the positive
kernel for collinear modes, as shown in Fig. 1 (a), meaning that super-
harmonics are not generated by mutual wave-wave interaction Dean
and Dalrymple (2000); Kim (2008). A slight, but yet negligible, con-
tribution of the positive kernel still occurs when the components are
non-collinear (Fig. 1 (b)).

In Fig. 1 (c), we notice on the other hand that the negative ker-
nel significantly contributes to the second-order nonlinearity, when
interacting components are collinear; this for any relative water
depth. The interaction is particularly strong for components of simi-
lar frequency, while it decays rapidly for increasing frequency differ-
ence. There is no dependence of the negative kernel on directionality,
as observed in Fig. 1 (d). However, it is important to note that
the negative kernel tends to infinity for self-interactions. Numer-
ically, this self-interaction is resolved by forcing the kernel to be
equal to zero Dean and Dalrymple (2000); Kim (2008). As expected,
sub-harmonics strengthen as the relative water depth is reduced.

2.2. Second-order orbital velocity for regular waves

A preliminary assessment of the effect of the interaction kernel
is presented here for regular waves: (i) a self-interacting monochro-
matic wave; (ii) two interactive collinear monochromatic waves of
different frequency. As noted in Song and Wu (2000), second-order
components u, v and w are statistically dependent. For simplicity,
only the horizontal component u along the main propagation direc-
tion will be considered hereafter. Numerically, the u component is
derived from the velocity potential in Fourier space as F −1[ikxF(0)],
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