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An empirical model to predict wave run-up on beaches considering storm wave and surge conditions and berm
widths (dry beach) has been derived through a synthetic data set generated from a one-dimensional Boussinesq
wave model. The new run-up equation is expressed as a function of a new Iribarren number composed of three
regions: the foreshore, the berm or dry beach width, and the dune. The dissipative effect of the berm is included
as a reduction factor expressed as a function of the bermwidthnormalized by the offshorewavelength. The equa-
tion is relatively simple but is shown to be applicable for a fairly wide variety of berm widths and storm wave
conditions associated with extreme events such as hurricanes, and it is shown to be an improvement over
existing empirical run-upmodels that do not consider the bermwidth explicitly. In addition, the newparameter-
ization of the Iribarren number considering the three regions and the bermwidth reduction factor are shown to
improve other empirical models.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many cases of inundation and coastal flooding occur during ex-
treme events such as hurricanes when the maximum wave run-up
exceeds the dune crest. Therefore, the severity of hurricanes can be
grossly determined by the relation among the wave and surge con-
ditions and the beach morphology (Sallenger, 2000). Although
existing time-dependent numerical models provide accurate, deter-
ministic estimates of wave run-up for given boundary conditions, it is
nevertheless necessary to develop simplified expressions for wave
run-up that can be used, for example, in probabilistic models for a
range of surge and wave forcing and morphological conditions. The
complex nature of wave run-up on realistic cross-shore profiles pro-
hibits analytical solutions, so simplified run-up formulas rely on empir-
ical approaches based on field observations (e.g., Holman, 1986) and
laboratory experiments (e.g., Mase, 1989). Few field observations
exist, however, of run-up during extreme storm events (e.g., Senechal
et al., 2011), so it is necessary to consider the suitability of these empir-
ical equations for extreme events.

Generally, wave run-up is characterized by the Iribarren number,
which is also known as the surf-similarity parameter (Battjes, 1974),

and iswidely utilized forwave run-up on beaches and coastal structures
and for tsunami inundation. The Iribarren number is

ξ ¼ tanβffiffiffiffiffiffiffiffiffi
H=L

p ð1Þ

where β is the angle of the characteristic slope, H is the characteristic
wave height, and L is the characteristic wavelength. For consistency,
we use the nomenclature “Iribarren number” rather than “surf-similar-
ity parameter” because the parameter is also used for coastal structures
and tsunamis without surf zones, andwe follow the conventional nota-
tion of ξ.

For beaches,β is often taken as the angle of the foreshore slope around
the still water shoreline, although other values have been used such as
the slope at the breakpoint or the mean slope over the active portion of
the surf zone. For coastal structures, β is generally less ambiguous since
rubble mound revetments and breakwater are typically built with a con-
stant slope, usually much steeper than sand beaches. The characteristic
wave height is typically the deepwater wave height, H0, the wave height
at breaking Hb, or, in the case of coastal structures, the incident wave
height at the toe of the structure, Hi. Similarly, the characteristic wave-
length can be the deep water wavelength L0 = gT2/2π, the wavelength
at breaking Lb estimated using linear wave theory and the local water
depth at breaking, or the wavelength estimated at the toe of a coastal
structure. There are a variety of wave conditions to consider such as reg-
ular waves from laboratory studies, irregular waves, and transient waves
such as tsunamis. For regular wave studies, H and T are not ambiguous.
For the case of irregular waves, H is generally characterized by the
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significant wave height Hs, and T is generally characterized by the peak
period Tp, although other characterizations are possible such as H1/10 or
themeanwave period Tm. For transientwave studies such as for tsunamis
modeled as solitarywaves,H is generally themaximumpositive displace-
ment at a given depth, and T is defined as the duration over which the
positive displacement exceeds a certain value, for example.

Since Hunt (1959), empirical run-upmodels have been expressed as
a function of the Iribarren number,

R
H

¼ Kξ ð2Þ

where R is the maximum run-up defined as the vertical projection
above the still water level, and K is an empirical constant.

Holman (1986) used field observations of wave run-up at Duck, NC,
to develop an empirical run-up model on natural beaches using a simi-
lar form as Eq. (2) and is given by

R2%

H0
¼ 0:83ξ f þ 0:2 ð3Þ

where the run-up is the value exceeded by 2% of the run-up events, R2%,
normalized by the significant wave height in deep water. The Iribarren
number is defined using the angle of the foreshore slope βf, significant
wave height in deep water, and the wavelength in deep water using
the peak wave period:

ξ f ¼
tanβ fffiffiffiffiffiffiffiffiffiffiffi
H0
�
L0

q ð4Þ

Mase (1989) developed a similar run-up equation based on irregular
waves generated in a laboratory on a plane slopes and is written as

R2%

H0
¼ 1:86ξ0:71f ð5Þ

where Eq. (4)was used to define the Iribarren number in a similarman-
ner as Holman (1986), and the foreshore slope was the same as the
slope for the incident waves prior to breaking and ranged from 1/30
to 1/5.

Using data sets fromUS East andWest Coast beaches, Stockdon et al.
(2006) developed an empirical wave run-up model (hereinafter re-
ferred to as the “Stockdon model” for brevity) using an Iribarren-like
form given as

R2% ¼ 1:1 0:35 tan β f H0L0ð Þ0:5 þ 0:5 H0L0 0:563 tan β f
2 þ 0:0004

� �h i0:5
� �

ð6Þ

This model is composed of separate terms to consider different contri-
butions of the wave setup and swash. The swash (the second term on
the left hand side of Eq. (6)) is further separated into two parts consid-
ering incident wave and infra-gravity wave effects.

In parallel with the development of empirical equations for wave
run-up on beaches, there has been significant development for wave
run-up equations on coastal structures. Unlike studies on beaches, stud-
ies of run-up on coastal structures were developed primarily using lab-
oratory experiments due, in part, to difficulties of direct measurements
on coastal structures during storms. Van derMeer and Stam (1992) pro-
vided an empirical run-up equation as piecewise continuous function
composed of linear and power curve using the Iribarren number

R2%

Hs
¼ 0:96ξm

1:17ξm
0:46

ξm b 1:5
ξm ≥ 1:5

�
ð7Þ

where ξm is the Iribarren number defined using the structure slope,Hs is
the significant wave height of the incident waves at the toe of the

structure and, and the subscriptm denotes that the wavelength is com-
puted using themean period. This work was later extended by DeWaal
and Van der Meer (1992) and VanderMeer (1998) to provide a general
wave run-up model on dikes to account for the design of the berm,
roughness effects of the dike, andwave direction through a combination
of reduction factors and is given as

R2%

Hs
¼ 1:6 γ1γ2γ3 ξp ð8Þ

where the subscript p denotes that Iribarren number is defined using
the peak period Tp. The reduction factor γ is a dimensionless number
less than 1.0, determined experimentally to account for effects of the
berm geometry, γ1, surface roughness such as natural grass or rock,
γ2, and wave direction, γ3. This run-up model has an empirical maxi-
mum limit of R2%/Hs = 3.2 γ2 γ3.

Eqs. (7) and (8) have been widely adopted for the design of coastal
structures, and examples of their application are summarized in coastal
engineering manuals (e.g., Pullen et al., 2007; USACE, 2003). Similar to
run-upmodels for beaches, some empiricalmodels use slightly different
forms of the Iribarren number, particularly when defining the slope be-
cause some revetments and dikes may be composed of multiple slopes
or may include relatively short, flat berms. The need to account for the
profile shape was recognized by Saville (1958), and models generally
employ an ‘equivalent slope’ as summarized by Mase et al. (2013).

Although tsunamis can occur on vastly different scales compared to
windwaves on beaches and coastal structures, the Iribarren number has
been found to be a suitable parameter for tsunami run-up studies. For
example, Kobayashi and Karjadi (1994) combined numerical model re-
sults with laboratory experiments to develop an empirical formula to
predict the run-up height normalized by the incident solitary wave am-
plitude (A0) as a function of Iribarren number, given as

R
A0

¼ 2:955ξ0:395 ð9Þ

where the Iribarren number is defined using a characteristic period for
the solitarywave defined as the duration overwhich the free surface ex-
ceeds 0.05A0. Kobayashi and Karjadi (1994) show that Eq. (9) is applica-
ble for 0.125 b ξ b 1.757 and that changing the definition of the
characteristic period based on exceedance of either 0.01A0 or 0.1A0

changes the predicted run-up on the order of 10%.
The application of Iribarren number for tsunami run-up was analyt-

ically studied by Madsen and Fuhrman (2008), and it highlighted
that run-up solutions for the canonical run-up depend on Iribarren
number for the non-breaking regular wave. Furthermore, Madsen and
Schaeffer (2010) provided analytic run-up solutions for the periodic
and transient waves in terms of the Iribarren number, considering
separate breaking and non-breaking regimes. The solutions are themin-
imum value between these two terms, given respectively as,

R
A0

¼ C1 ξ
2:0
1

C2 A0=h0ð Þ−0:25ξ−0:5
1

(
ð10Þ

where A0 is the maximum amplitude of the transient (tsunami) wave
modeled using a Gaussian profile and h0 is the water depth offshore
and can be idealized as thewater depth at the continental shelf. For lab-
oratory studies and numerical simulations, h0 is typically the water
depth in the constant-depth section at the seaward boundary. C1 and
C2 are analytical constant depending on input wave types (e.g., single
wave, C1 = 0.1512 and C2 = 4.0513) as discussed in Madsen and
Schaeffer (2010). The Iribarren number ξ1 is defined by a uniform
slope, the amplitude of the single wave A0, and the deep water wave-
length based on a representative period. For the case of a single wave
which sustains the solitarywave shape but its frequency is independent
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