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This study applied an extreme learningmachine to produce rapid forecasts of tsunamiwaveforms in coastal areas
using tsunami signals recorded at specified locations. The remarkable training speed of the algorithmmeans that
it can run in real-time, and therefore it is suitable for early warning systems in near-field tsunami events.
Additionally, as a universal function approximator, the proposed method can capture nonlinearities exhibited
by the tsunami. Therefore, it provides advantages over the standard inversion analysis used in many existing
studies, which is typically developed under a linear assumption. We applied the proposed method to the 2011
Tohoku earthquake tsunami. Our results demonstrate that the proposed method is more accurate and does not
significantly increase the computing time, when compared with the standard method. Furthermore, our model
uncertainty analysis proves that the method is robust and reliable, despite its dependency on the random
input weights and biases (the forecasts from several consecutive runs showed insignificant variability).
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1. Introduction

It is difficult to provide a reliable forecast of a tsunami generated by a
submarine earthquake. This is particularly true for near-field events,
where there is limited time to execute a tsunami warning system and
dissemination. Even though the current global network of sensors can
be used to immediately retrieve information on the earthquake param-
eters, they do not always explain the exact characteristics of the resul-
tant tsunami (Geist, 2002; Tsushima et al., 2009). Therefore, a tsunami
early warning system (TEWS) solely based on seismic data produces a
relatively large number of false-positive warnings (Behrens et al.,
2010). The best way to identify a tsunami is from its incident waves de-
tected by water level gauges. Subsequently, we can assimilate the trun-
cated data to forecast the tsunami waveforms at other locations.
However, we must consider the trade-off between forecasting accuracy
and speed. Additionally, the spatial coverage of the deployed gauges has
an important impact on the effectiveness of the forecast.

The standard tsunami forecasting method based on recorded wave-
forms uses tsunami waveform inversion (TWI). In general, this method
can be independent of seismic information, and very accurately esti-
mates the possibility of a tsunami. It can also produce a complete series
of waveforms rather than only extracting certain wave features such as
maximum amplitudes and arrival times. Many authors have proposed
different TWI methods using various designs and settings, to develop

both far-field and near-field TEWSs (e.g., Koike et al., 2003; Tsushima
et al., 2009; Yasuda and Mase, 2013). A more advanced TEWS can
even provide site-specific inundation forecasts within a reasonable
time (Gusman et al., 2014), but this requires intensive computational
efforts to construct a high-resolution inundation database, which is be-
yond the scope of this study. Aside from their effectiveness in detecting
tsunamis, most TWI methods are not applicable to nonlinear processes
because they impose a linear assumption. We believe that a method
that captures the nonlinearities in tsunamis must be integrated into a
TEWS.

Recent developments in computing technologies have resulted in a
new paradigm of modeling and techniques for handling data and
revealing underlying dynamics, which are sometimes not accessible
by conventional approaches. Neural networks are part of the growing
artificial intelligence branch, and are known for their ability in approx-
imating most practical nonlinear functions. Neural networks have
been applied to TEWS in previous publications (e.g., Hadihardaja et al.,
2010; Mase et al., 2011; Romano et al., 2009). However, the triggering
mechanisms for those TEWS rely on estimates of the earthquake param-
eters. Namekar et al. (2009) proposed a better solution by incorporating
tsunami waveforms (as in the TWI) to forecast coastal waveforms and
the run-up. Their method requires no (or minimal) earthquake infor-
mation. The only drawback is that the back propagation algorithm re-
quires iterative training, which results in considerable computation
time. Consequently, it may not be appropriate for near-field tsunami
events.

Here, we propose using a recent neural network algorithm called an
extreme learning machine (ELM). The ELM can be trained up to 170
times faster than gradient-based methods such as back propagation,
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and produces better generalizations (Huang et al., 2006). Therefore, it is
a promising alternative tool for future TEWS.We applied this method to
near-field tsunami predictions of the 2011 Tohoku event, which was
recorded at various measurement devices (offshore and onshore)
covering the Tohoku and Hokkaido areas. To assess the performance
of the proposed method, we compared our results to the standard
TWI results and performed rigorous statistical evaluations. Additionally,
we also conducted amodel uncertainty analysis to ensure the consisten-
cy of the method, by determining confidence intervals and observing
the variability of several test runs. This last assessment is necessary
because, as with any typical neural network methods, the resulting
forecasts are subject to uncertainties caused by the random network
parameters.

2. Materials and methods

2.1. Tsunami data and bathymetry

This study used tsunami waveforms recorded by four types of
measurement devices: ocean bottom pressure (OBP) gauges, global po-
sitioning system (GPS) buoys, wave gauges, and tidal gauges. We used
data from four OBP gauges: two are deployed off the coast of Iwate
(TM1 and TM2) and operated by The University of Tokyo and Tohoku
University, and the other two are located off the coast of Tokachi
(PG1 and PG2) and are operated by the Japan Agency for Marine-
Earth Science and Technology. The other gauges used were six GPS
buoys (G801, G802, G803, G804, G806, and G807), six wave gauges
(W202, W203, W205, W219, W602, and W613), and three tide gauges
(T618, T624, and T625), which are operated by theMinistry of Land, In-
frastructure, Transport, and Tourism. The locations of all the gauges are
shown in Fig. 1. All the data were pre-processed to remove signals from

other sources (i.e., tides and wind waves), and resampled into 15-s
intervals.

To generate the synthetic waves used in the forecast algorithm, this
study used a numerical simulation with nested grid systems that covers
an area between 140–148°E and 35–44°N. The grid size of the model
for the offshore stations was 30 arc sec, and 10 arc sec for the coastal
gauges. For the larger grid size, we obtained the bathymetry data
from the General Bathymetric Chart of the Oceans (GEBCO_08 Grid)
provided by the British Oceanographic Data Center. The bathymetry
for the smaller grid (10 arc sec) was resampled from the J-EGG500,
which is a 500-m gridded bathymetric data set provided by the Japan
Oceanographic Data Center. The bathymetry profile for the study area
is shown in Fig. 1.

2.2. Tsunami waveform inversion

TWI is based on the principle of linear superposition of unit sources
distributed inside the source-influenced area. These unit sources can be
represented by either a fault model or an auxiliary basis function. The
main goal of conventional TWI is to determine the magnitude of the
slip on a fault plane or to infer the initial displacements that excite the
tsunami. However, it can also be extended to estimate waveforms
outside the inversion time range. Our study used a two-dimensional
Gaussian shape (Mulia and Asano, 2015) instead of a fault model to rep-
resent the initial water surface deformation. This is more practical for
TEWS, because we do not need information about the fault geometry
that initiated the earthquake. We distributed equidistant unit sources
at 20-km intervals throughout the study area (Fig. 2). Then, for each
unit source, the tsunami propagations were computed using the
COMCOT model based on the linear shallow water equation (Wang,
2009). The resulting synthetic waveforms were stored for all the

Fig. 1. Bathymetry profile of the study area and gauge locations. The red dots are theOBP gauges, the green squares are the GPS buoys, and the blue triangles are the coastal gauges (T: tide
gauges and W: wave gauges). The black star is the epicenter of the 2011 Tohoku earthquake.
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