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a  b  s  t  r  a  c  t

In this  work  we  present  a fully  synchronous  coarse  grained  cellular  automaton  model  for  large-scale
simulations  at molecular  level.  The  model  is based  on  Margolus  partitioning  scheme,  which  was  gen-
eralized  as  to describe  quantitatively  diffusion,  adsorption  and  directed  flow  in porous  media.  Our  aim
is to create  conceptually  simple  and  computationally  efficient  framework  to model  the  mass  transport
in  porous  materials  with  large  representative  volume.  This  work  focuses  on  the  fundamental  aspects  of
the  generalized  Margolus  cellular  automaton.  We  exemplify  the  model  by solving  several  diffusion  prob-
lems,  studying  the monolayer  adsorption,  chromatography  on disordered  porous  structures  and  chemical
transformation  in a system  with phase  separation.  The  results  indicate  that  the  model  reflects  the  essen-
tial  features  of  these  phenomena.  Absence  of  round-off  errors,  fully  synchronous  way  of implementation,
autonomous  physically  meaningful  time  scale  and  ease-to-handle  boundary  conditions  make  this  model
a promising  framework  for study  various  transport  phenomena  in porous  structures.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Being extremely useful idealization, cellular automaton (CA)
models grasp the essential of the dynamic systems and have pro-
vided deep insight into complex processes such as multiphase
flows, chemical reaction, protein folding, drug release, neural
activity, social segregation, music composing and many others
(Ilachinski, 2001; Wolfram, 2002; Chopard and Droz, 2005). CA
rely on an idealization of the physical system in which space and
time are both discrete. One of the remarkable properties of CA
approach is the representation of the entire system as a set of inter-
acting cells. Each cell has a state from a finite set of possible ones.
In practical implementations cells may  be assigned with physi-
cal quantities, e.g. number of particles, temperature, velocity, etc.
States are updated at each time step taking into account states of
the neighbors and according to transition rules. In spite of locality
and uniformity, CA models may  demonstrate extremely complex
behavior, while the transition rules can be very simple (Wolfram,
2002).

In the context of molecular modeling, one significant advan-
tage of the CA models is that they can be constructed in a modular
fashion by combining submodels, e.g. diffusion, stirring, chemical
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reaction, dissolution or swelling of a solid structure (Vanag, 1999).
This modularity makes this class of the models conceptually simple
and represents a certain advantage over differential equation based
models as it reduces the complexity of model design, programming,
debugging, simulation and analysis (Toffoli, 1984; D’Souza et al.,
2002). Another advantage of CA models is that they are intrinsically
coarse grained, i.e. internal molecular degrees of freedom and some
intermolecular interactions are leaved out. Therefore, CA models
can be formulated upon wide spatial and time scales ranging from
angstroms to millimeters and from picoseconds to seconds. This
results in a tremendous saving of computational effort and thus
allows to model large systems and longer time scales (Lis et al.,
2012).

A set of transition rules should reproduce experimentally
observed behavior and allow for verifiable predictions. The main
issue thereby is to establish reasonable transition rules for a given
process (Richards et al., 1990). For some mass transfer problems
such rules have been formulated to study drug release (Zygourakis
and Markenscoff, 1996; Bertrand et al., 2007; Laaksonen et al.,
2009), diffusion of ligands across the protein surface (Kier et al.,
2003), transport through a chromatographic column (Kier et al.,
2000), chemical etching and corrosion (Than and Büttgenbach,
1994; Córdoba-Torres et al., 2001). Ideally, the set of rules should
not explicitly describe every possible response of the model, i.e.
not be phemonological. The most famous example is the Game
of Life wherein simple rules give rise to complex patterns and
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self-replication behavior (Wolfram, 2002). However, to match
experimental results with modeling ones, it is often of necessity
to introduce ad hoc transition rules into the model making it rather
descriptive than explanatory (Toffoli and Margolus, 1990). The use
of physically sound rules to study real life problems still remains
challenging.

The great majority of the CA models developed so far can only
be launched in the asynchronous mode. This means that transi-
tion rules are applied one after another to each cell on the lattice or
to some of them. Even though the rules are local and all cells are
updated uniformly, the parallel implementation becomes difficult,
which in turn limits large-scale simulations. The most common
example is the naive diffusion (Bandman, 1999), wherein a cell
interchanges with its neighbor with a certain probability. Being
applied to each cell on the lattice simultaneously, this rule leads
to collisions, i.e. particles may  vanish or multiply. Hence the asyn-
chronous computation is only possible (Bandman, 1999).

In order to conciliate both realistic rules and as much synchro-
nism as possible, some approaches have been developed. One class
of deterministic models relies on microscopic gas dynamics in dis-
cretized space and time with discrete particle velocities, where
particle collision and propagation rules determine the evolution of
the system. This fully discrete and synchronous approach, so called
lattice-gas automaton (LGA), has been extensively used to describe
single and multiphase flow in porous media, chemically reacting
flows and heat transfer (Wells et al., 1991; Biggs and Humby, 1998;
Demontis et al., 2006). Although recent results indicate that LGA
are merely a subset of CA and any LGA is immediately rewritable as
a CA (Toffoli et al., 2008), it is perhaps useful to distinguish between
LGA and CA. The reason lies in the fact that CA transition rules rather
than LGA can embrace chemical intuition of how any given process
proceeds.

In this paper we are intended to draw attention to another class
of fully synchronous models, namely, partitioning CA, proposed by
Margolus. The key idea of the partitioning cellular automata is the
discretization of space to get uniform and separate blocks, which
can evolve independently (Toffoli and Margolus, 1987). The lattice
is divided into 2 × 2 blocks in two ways, even and odd (Fig. 1).
Any cell is either occupied with molecule or empty (cells are of
molecular size). As molecular diffusion can be simulated through
the random walking of molecules along the lattice, the transition
rule can be expressed as follows: rotate each block by �/2 either
clockwise or counter clockwise with certain probabilities. Keeping
alternating between even and odd scheme, and applying rotations
to each block, global evolution of the system can be deduced. It
is noteworthy to highlight here that the evolution of each block
is independent of each other and thus computations can be per-
formed in a parallel manner.

Advantages of the Margolus scheme revealed in the past works
can be summarized as follows. First, the scheme is conceptually
simple and has been proved to be reliable framework to simulate
diffusion transport. Second, it is intrinsically synchronous and thus
allows for parallel implementation (see Section 2.4). Third, not only
diffusion but also chemical reactions can be built into the model in
a modular fashion. Several attempts have been made to apply the
partitioning CA to transport problems and heterogeneous chemical
kinetics. Bandman (2007) has modeled diffusion and convection by
rotations with subsequent drift along the direction of the applied
force. Di Maio et al. (2000) have utilized the Margolus partitioning
scheme to simulate both diffusion and heterogeneous reaction of
coal combustion. Roussel and Lim (1995) have developed a discrete
dynamic model of lignin growth, where influx, diffusion and chem-
ical bonding of the monomer were all realized within 2 × 2 blocks
in a parallel manner. Application of the Margolus CA to the mod-
eling of heterogeneous chemical reaction started from pioneering
works of Berryman and Franceschetti (1989) and further developed

by Mai  and von Niessen (1992) with recent application to chaotic
chemical dynamics (Lemos and Córdoba, 2010).

To the best of our knowledge, no attempt has been made
to develop a consistent approach to transport phenomena in
porous media using Margolus scheme. Neither inter-particle nor
particle–wall interactions have explicitly been considered in pre-
vious works. Particles are treated as an ideal gas with excluded
volume (they are not allowed to overlap). Therefore we are
attempted to elaborate a framework wherein the rotation probabil-
ities are related to corresponding free energy changes so that each
block tends to the local equilibrium. Since adsorption and convec-
tive mass transfer are essential processes for great majority of the
molecular systems we  address the question whether synchronous
Margolus scheme can be extended to embrace these phenomena
via proper selection of rotation probabilities. Besides, it is advan-
tageous to retain parallelizability of the original scheme to utilize
the high degree of parallelism of modern computers. Our  long-term
aim is to create conceptually simple and computationally efficient
framework to model mass transport in disordered porous media
such as aerogels. This class of materials has a large representative
volume and disordered mesoporous structure (Pohl et al., 1995;
Salazar and Gelb, 2007) and thus can hardly be simulated with
existing methods like MD and MC.

Current study is a first step toward this aim and presents the
extended CA model wherein diffusion, adsorption, directed flow in
porous media and chemical transformations are all described in a
unified manner using Margolus partitioning scheme. The central
focus of the paper is to demonstrate reliability of this model by
solving simplified mass transport problems with known analyti-
cal solution such as diffusion in cylindrical, conical and parabolic
pores, monolayer adsorption on random porous structure and chro-
matography. Incorporation of chemical transformations into the
model is exemplified by a system with spinodal decomposition
with simultaneous chemical reaction. Chemical engineering pro-
cesses where the information provided by these simulations has
significant relevance are outlined.

2. The cellular automaton model

2.1. Cell states and transitions

In this work, the CA model is composed as a set of cells forming
2D rectangular lattice. A set S =

{
E, M, S

}
contains possible states

of each cell: E (empty or solvent), M (occupied with a molecule), S
(solid phase). At each discrete time step 2 × 2 blocks are singled out
from the lattice following even and odd division patterns, as in the
classical Margolus scheme (Fig. 1). Molecular motion is modeled
for each block independently by its rotation. In that, only M-cells
are able to diffuse on the lattice, whereas S-cells are fixed by initial
conditions. Thus S-cells are treated as immutable porous media.

If one or more S-cells fall into a block, it can be rotated if and
only if there is no overlapping between S- and M-cells. To generalize
the Margolus model, besides clockwise (cw) and counter clockwise
(ccw) rotations, a block is allowed to remain unmoved (um). A set
of possible transitions T is defined as

T = {um → cw; um → ccw; um → um} .

A transition tr ∈ T transforms one configuration inside the block
into another keeping the positions of S-cells unchanged. When
all blocks have undergone rotations, even and odd partitioning
changes over to ensure the isotropy of space (Toffoli and Margolus,
1990).

As mentioned in Introduction, some transport problems have
been solved using the Margolus CA. The essential extension that
we propose in this work is to bring together ability of the classical
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