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Abstract: Within the frame of linear potential flow theory, the impact of a porous rectangular barrier on a seabed on the dynamic 
characteristics of gravity waves is investigated. The porous barrier can be regarded as an abstract representative such as a seabed 
plant, a wave breaker, inhomogeneous topography, and trussed supporting of ocean engineering platform, etc. In the process of 
mathematical modeling, the method of matched eigenfunction expansions is employed for analysis, where a newly defined form of 
inner product is introduced to improve the simplicity of derivation. Under this definition, the inner product is automatically 
orthogonal, which will provide great simplification to obtain the expansion coefficients. Once the wave numbers for the fluid region 
and the barrier region are obtained, the reflection and transmission coefficients of the wave motion can readily be calculated. 
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Introduction  

Considering the impact of a porous medium on 
wave motions is one of the meaningful and significant 
research issues in hydrodynamics. Many types of con- 
structs and topographies in the ocean environment, 
such as wave breaker, permeable seabed, water plants 
zone, etc., can be modeled by porous media. The 
permeability of relevant objects is usually formulated 
in two different ways. One is to neglect the thickness 
of the porous medium by considering the changes of 
velocity field on its surface to carry out appropriate 
boundary conditions, e.g., Martha et al.[1] and 
Mohapatra[2]. Another way is to regard the porous 
medium as a special region where the wave motion is 
described by a potential function after equivalent 
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averaging. For example, Das and Bora[3] studied the 
case of wave propagating across a porous medium 
occupying the whole depth of the fluid and afterwards 
reflected by a vertical rigid wall. Recently, Metallinos 
et al.[4] investigated wave scattering by a porous trape- 
zoidal structure submerged on the seabed of shallow 
water region by a computational method. 

In this Letter, an improved semi-analytical app- 
roach is proposed to obtain the reflection and trans- 
mission coefficients of free-surface gravity wave sca- 
ttering by a porous rectangular barrier fixed on the 
fluid bottom. The method of matched eigenfunction 
expansions is employed in the derivation. A newly 
defined form of inner products with orthogonality for 
the vertical eigenfunctions in the porous barrier region 
is found to deal with the matching relations between 
different fluid regions, by which the number of simu- 
ltaneous equations is reduced by half. 

The physical model of the related problem is 
given under a two-dimensional Cartesian coordinate 
system xoz  placed on the surface of a homogeneous 
fluid with the z  axis upwards vertically, as shown in 
Fig.1. Free-surface gravity waves income from ∞−  
onto the porous rectangular barrier symmetrically 
mounted on the seabed with respect to the z  axis. 
The width and the height of the barrier are b2  and 2h , 

http://crossmark.crossref.org/dialog/?doi=10.1016/S1001-6058(16)60656-X&domain=pdf


 520 

respectively, and the distance from the top of the 
barrier to the free surface is 1h . Let H  be the depth 
of the fluid. Obviously 1 2= +H h h . 
 

 
 
 
 
 
 
 
 
 
 
Fig.1 Schematic diagram of free surface gravity waves inco- 

ming onto a porous rectangular barrier mounted on 
seabed 

 
With the assumptions that the fluid is ideal and 

incompressible and the wave motion is irrotational and 
time-harmonic, the velocity field of the fluid can be 
described within the potential flow theory. Let ( ,xΦ  

, )z t  be the velocity potential function, where t  is the 
time. The fluid inside the porous barrier still satisfies 
the conservation law of mass, such that the wave 
motion inside can be described by the potential flow 
theory as well. By regarding ( , , )x z tΦ  as a piecewise 
function for the whole fluid domain, the part inside 
the barrier is actually generated by the equivalent 
averaging of the relevant fluid motion. Let ω  be the 
frequency of the incident waves. We separate the time 
variable of ( , , )x z tΦ  via taking the form of 

iRe{ ( , )e }tx z ωφ − , such that ( , )x zφ , the spatial part of 
the potential function, should satisfy 
 

2 ( , ) = 0x zφ∇                               (1) 
 
On the impermeable seabed, the boundary condition 
reads 
 

= 0
z
φ∂

∂
 ( = )z H−                           (2) 

 
According to the linearized Bernoulli equation, the 
combined boundary condition on the free surface is 
 

2

= 0
z g
φ ω φ∂

−
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where g  is the gravitational acceleration. 

Let B  denote the boundary line ( = ,x b H± − <  

1 1) ( , = )z h b x b z h< − − < < − . The velocity and pre- 

ssure must be coincident beside B , respectively. 
Sollitt and Cross[5] introduced three dimensionless 
parameters to describe the physical characteristics of 
the porous medium, i.e., the porosity ε , the linear 
friction factor f  and the inertial term s , by which the 
continuity conditions on B  are given as follows: 
 

=f p

n n
φ φ

ε
∂ ∂
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 on B                         (4) 

 
=f pGφ φ  on B                            (5) 

 
where the subscripts “ f ” and “ p ” are applied to dis- 
tinguish the potentials outside and inside the boundary 
line, respectively, n∂∂ /  refers to the directional deri- 
vative along the outward normal vector of B . Acco- 
rding to the form of the general solution we employed, 
G  is calculated from + is f . On the boundaries 
( =x b± , 1 0h z− < < ), the continuities of velocity and 
pressure also give 
 

+( , ) ( , )=b z b z
x x

φ φ−∂ ± ∂ ±
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                     (6) 

 
( , ) = ( , )b z b zφ φ− −± ±                         (7) 

 
Associating Eqs.(4)-(7), the matching relations can be 
derived as 
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 1( )H z h− < < −      (8b) 

 
( , ) = ( , )b z b zφ φ±± ±   1( 0)h z− < <            (9a) 

 
( , ) = ( , )b z G b zφ φ±± ±   1( )H z h− < < −        (9b) 

 
Let 1Ω , 2Ω  and 3Ω  represent the regions x <  

b− , bxb <<−  and bx > , respectively, as shown in 
Fig.1. Substituting the general solution of Laplace’s 
equation into Eqs.(2) and (3), the vertical eigenfun- 
ction ( , )Z k z  and the dispersion relation for the regio- 
ns 1Ω  and 3Ω  can be obtained as follows: 
 

cosh ( + )( , ) =
cosh

k z HZ k z
kH

                    (10) 

 
2 = tanhgk kHω                           (11) 
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