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Abstract: The study of nanobubbles (with sizes of the order of tens to hundreds of nanometers) is currently a hot spot of cavitation 
and bubble dynamics. In the literature, classical formulas are widely employed for the predictions of the thermal behavior of oscilla- 
ting macro-bubbles. However, for modelling nanobubbles, the classical formulas may not be adequate due to the effects of the 
surface tension. In the present paper, a formula with the effects of surface tension fully considered is proposed for the predictions of 
thermal behavior. The predictions based on the classical formula are also presented for comparisons to show the advantages of the 
present formula. 
 

Key words: nanobubbles, cavitation, thermal behavior, surface tension 
 
 

 Nanobubbles are bubbles with sub-micro sizes 
and gas inside in the aqueous solution. Recently, the 
presence of stable surface nanobubbles has attracted 
intensive studies[1,2]. Those surface nanobubbles have 
many unique characteristics, leading to plenty of app- 
lications in the industry[1]. For example, the surface 
nanobubbles could have a long lifetime up to several 
days[1]. The production of surface nanobubbles can be 
easily achieved through the so-called standard solvent 
exchange procedure (i.e., exchange of short-chain al- 
cohol with water on solid substrate). The gaseous 
nature of surface nanobubbles has also been confir- 
med by experimental studies[1]. Lohse and Zhang[1] 
gave a full review of surface nanobubbles. 

Owing to the small size of nanobubbles, many 
classical formulas may not be valid. For example, the 
classical diffusion theory predicts that the nanobubbles 
should be totally dissolved into the solution through 
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the mass diffusion within tens of microseconds. How- 
ever, the air nanobubbles could persist for more than 
four days, suggesting a new mechanism beyond the 
classical theory[1]. Similarly, the thermal behavior of 
nanobubbles has its features. The thermal damping 
mechanism is one of the important aspects for accura- 
te modeling of bubbles. The thermal damping mecha- 
nism of macro-bubbles has been investigated by many 
researchers over several decades. Assuming a uniform 
pressure inside the gas bubbles, Devin[3] derived an 
analytical formula for the predictions of the thermal 
damping mechanism, which is currently highly cited 
in the literature and has been widely quoted by many 
textbooks and research papers. Formulas related with 
the thermal damping mechanism are widely employed 
for revealing underlying physics in the bubble pheno- 
menon, e.g., the rectified mass diffusion, the wave 
propagation in bubbly liquids, the acoustical scattering, 
the bubble instability, the bubble-bubble interaction, 
and the sonoluminescence. Zhang[4] gave a brief re- 
view of the models for thermal effects. 

In the present paper, the thermal behavior of 
spherical nanobubbles in the liquids are theoretically 
investigated. After a close re-examination of the cla- 
ssical formula, it is found that the effects of the surfa- 
ce tension are not fully considered in the aforemen- 
tioned formula, leading to a less accurate prediction of 
the nanobubble behaviors. 

In this section, the classical work by Devin[3] on 
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the spherical bulk bubbles will be introduced with 
details. The following assumptions are used[3]: 

(1) The liquid temperature adjacent the bubble 
interface does not change so the liquid behaves as a 
heat reservoir[3]. Therefore, the equation of the energy 
conservation in the liquid was not solved in Ref.[3]. 

(2) The density and the specific heats of the gas 
are regarded as constants[3]. 

(3) The pressure in the gas bubbles is uniformly 
distributed. Therefore, the pressure in the gas is only a 
function of the time but not the radial coordinate[3]. 

(4) The boundary conditions on the bubble inter- 
face and at the bubble center are given as follows[3]: at 
the center of the bubble, the changes of the tempera- 
ture must be finite and the gradient of the change of 
the temperature must be zero, on the bubble-liquid 
interface, the changes of the temperature must be zero 
and the gradient of the change of the temperature must 
be finite. If we define 1θ  as the change of the tempe- 
rature inside the gas bubbles from the equilibrium 
absolute temperature, the boundary conditions at the 
center of the bubble are 1θ → ∞  and 1d / d = 0tθ  
while the boundary conditions on the bubble-liquid 
interface are 1 = 0θ  and 1d / dtθ → ∞ . 

(5) The oscillations of the pressure, the bubble 
volume and the temperature are assumed to be small[3]. 

In this section, the key points of the derivation 
process of Devin[3] is summarized. Here, most notatio- 
ns of Devin[3] are retained.  

By differentiating the first law of thermodynami- 
cs, one obtains, 
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Here, U  is the internal energy of the gas bubble, q  is 
the amount of heat transferred, W  is the work done 
on the gas bubbles, t  is the time, 1ρ  is the gas density, 

1vs  is the specific heat of the gas at a constant volume, 

1θ  is the change of the temperature inside the gas 
bubbles from the equilibrium absolute temperature, 

1K  is the thermal conductivity of the gas, r  is the 
radial coordinate, 2P′  is the pressure on a infinitesimal 
spherical shell with volume v′ . Using the ideal gas 
law, v′  in Eq.(1) can be eliminated, resulting in a 
differential equation of 1θ . Then the solution of 1θ  
can be obtained through solving this differential equa- 

tion with related boundary conditions. 
Using the ideal gas law again, the dynamic volu- 

me of the oscillating gas bubble can be obtained. By 
employing the equation of the bubble motion, the 
stiffness and the energy loss caused by the thermal 
damping mechanism can both be obtained. 

For convenience, the dissipation of the energy 
through the thermal damping mechanism is represe- 
nted by a term related with the “effective thermal 
viscosity ( )thµ ” as done in Ref.[3]. The non-dimen- 
sional thermal damping constant ( )thδ  is defined by 
Devin[3] as 
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Here, ω  is the angular frequency of the driving sound 
field, thµ  is the effective thermal viscosity, lρ  is the 
liquid density, 0R  is the equilibrium bubble radius, 

0ω  is the natural frequency of the oscillating gas bu- 
bbles, and thβ  is the thermal damping constant. 
Devin[3] gave the expression of thδ  as follows: 
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Here, Im  and Re  denote the imaginary and real 
parts of the function, respectively, ,g pD  is the thermal 
diffusivity of the gas at a constant pressure, γ  is the 
ratio of the specific heats of the gas. Eqs.(2)-(4) is the 
widely cited formulas for the predictions of the the- 
rmal damping behavior of the oscillating bubbles. In 
Eqs.(3) and (4), the notations of Prosperetti are emplo- 
yed. 

After the derivation of Devin’s formulas as shown 
in the last section, it is found that the effects of the 
surface tension has not been fully considered. Hence, 
in this section, a correction is made following the 
framework of Devin[3] with most of his notations re- 
tained. 

In Eq.(4) of Devin[3], the instantaneous pressure 
on the bubble interface 2( )P′  can be represented by the 
sum of two terms as follows 
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