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a  b  s  t  r  a  c  t

The  Krill  Herd  optimization  technique,  which  is based  on  the  simulated  herding  behaviour  of  the krill
crustacean,  is applied  to calculations  involving  phase  equilibrium  and  phase  stability,  as  the  application
of  this  emerging  technique  is  extremely  limited  in  the  literature.  In  this  work,  the  Krill  Herd  algorithm
(KH)1 and the  modified  Lévy-flight  Krill  Herd  algorithm  (LKH)2 has been  applied  to  phase  stability  (PS)3

and  phase  equilibrium  calculations  in non-reactive  (PE)4 and reactive  (rPE)5 systems,  where  global  mini-
mization  of  the  total  Gibbs  energy  is necessary.  Several  phase  stability  and  phase  equilibrium  systems
were  considered  for the  analysis  of the  performance  of  the technique  that includes  both  vapour  and  liquid
phase  conditions.

The  Krill  Herd  algorithm  was  found  to reliably  determine  the  desired  global  optima  in PS,  PE  and
rPE  problems  with generally  higher  success  rates  and lower  computing  time  requirements  than  pre-
viously  applied  metaheuristic  techniques  such  as those  involving  swarm  intelligence  and  genetic  and
evolutionary  algorithms.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The behaviour of a particular system of components at a fixed
temperature (T), pressure (P) and overall composition (zi) is essen-
tial for the design and simulation of most processes involving the
system. Particularly from a chemical engineering stand point, the
knowledge of the phase behaviour of a system of components is
imperative for the design and simulation of the majority of sepa-
ration processes. Such processes can include complex techniques
such as reactive distillation and supercritical extraction, where the
accuracies and reliabilities of phase behaviour calculations have a
strong influence on the simulation results (Seider and Widagdo,
1996).

The phase behaviour of a mixture at a fixed T, P, zi, is gener-
ally characterized by phase stability (PS) and phase equilibrium
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1 Krill Herd algorithm.
2 Lévy-flight Krill Herd algorithm.
3 Phase stability.
4 Phase equilibrium.
5 Reactive phase equilibrium.

(PE) (Wakeham and Stateva, 2004). The phase stability (PS) prob-
lem requires the calculation of the number of phases a particular
closed system at a given T, P and zi will form in order to achieve the
state of its lowest total Gibbs energy (Gt). A system is stable if, for
instance, a mixture of two liquids forms a single liquid phase at a
fixed temperature, pressure and overall composition.

A consequence of instability is of course the formation of two or
more phases that equilibrate at the closed system temperature and
pressure. This leads to the phase equilibrium (PE) calculation where
the composition and volume of each phase must be determined to
characterize the phase behaviour of the entire system.

It is also possible that a chemical reaction may  occur between
the constituents of the mixture under consideration. In such cases
additional species are generated by the chemical reaction. The
phase behaviour is thus influenced by the reaction kinetics, and
conversely, the reaction equilibrium is influenced by the phase
behaviour (composition and volume at phase equilibrium). These
type of systems exhibit simultaneous chemical (reactive) and phys-
ical equilibrium (phase) (rPE).

The phase stability problem requires the global minimization of
the tangent plane distance function (TPDF) (discussed in Section 3),
which is used to indicate the stability of a system for a given T, P
and zi. The PE and rPE problems require the global minimization
of the total Gibbs free energy. These optimizations have proven
to be challenging (Zhang et al., 2011a,b). This is due to several
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Nomenclature

Symbols
c total number of components in a mixture
Cbest effective coefficient of best krill
Cfood food attraction coefficient
Di random diffusion variable of ith individual
Fi foraging variable of ith individual
g Gibbs energy change of mixing
GE Gibbs excess energy
�Grxs

◦
standard Gibbs energy change of reaction

GSR global success rate
GT total Gibbs energy
h Krill generation
Keq reaction equilibrium constant
Keq vector of reaction equilibrium constants
Ki value of objective function of ith individual
Kbest optimum value of the objective function K
�
Ki,j relative fitness of the evaluated objective function,

K of the ith and jth individuals.
�
Ki,ibest relative fitness of the current evaluated objective

function, K of the ith individual with its previous
best value

Kworst worst value of the objective function K
kmax maximum number of allowable iterations for the

calculation
LB abbreviation of lower parameter bound
ni number of moles of component i
nij number of moles of component i in phase j
N matrix of stoichiometric coefficients
NFE abbreviation of number of function evaluations
Ni Krill Herd distribution
NN herd size
nref vector of the molar compositions in terms of the

reference components
P pressure
PE abbreviation of phase equilibrium
PS abbreviation of phase stability
R universal gas constant
rand∈[i,j] a randomly selected number in the range i to j.
rPE abbreviation of reactive phase equilibrium
SC abbreviation of stopping condition
SR abbreviation of success rate
t time
�t  scaling parameter of speed vector
tol tolerance
TPDF tangent plane distance function
u Lévy flight distribution
UB abbreviation of upper parameter bound
xi liquid composition of component i
Xi position of the ith krill individual
Xbest optimal Krill position
�
Xi,j relative attraction between krill individuals i and j
�
Xi,ibset relative position of the current individual, Xi to its

previous best value
yi trial composition of component i
zi initial composition of component i
� i activity coefficient of component i in a mixture
∈ tolerance of optimization
εi fraction of component i in a phase
�ij fraction of component i in phase j
� Lévy flight distribution exponent
�i chemical potential of component i in a mixture

�0
i

chemical potential of pure component i
� total number of phases
	i fugacity coefficient of component i
�
	i fugacity coefficient in solution of component i
O the big O

Subscripts/superscripts
calculated a calculated parameter
F parameter evaluated at feed condition
food parameter evaluated at food location
global a global optima
initial an initial guess of a parameter
T a total parameter

factors; firstly, the number and types of phases (vapour/liquid) are
not known before the optimization procedure. Secondly, the non-
linearity of the various thermodynamic models usually applied to
PE modelling such as cubic equations of state and complex activ-
ity coefficient models, infer local minima with objective function
values very close to the global minima, especially near the critical
region and phase boundaries. Furthermore, non-physical and trivial
solutions are often possible at local minima. The consequences of
erroneously considering local minima as the global minimum can
lead to, for instance, prediction of false phase splits, as discussed by
Gau et al. (2000) and Ohanomah and Thompson (1984). Thirdly, in
systems exhibiting multiple phases such as vapour–liquid–liquid at
equilibrium, a large difference in the Gibbs energy exists between
the vapour and liquid phases, with much smaller differences in the
Gibbs energy between the two liquid phases. Consequently opti-
mization techniques struggle to locate the global minimum due
to the large variance in the orders of magnitude of the terms that
comprise the objective function.

Numerous global optimization methods are available in the lit-
erature (Land and Doig, 1960; Kirkpatrick et al., 1983; Dorigo, 1992;
Duan et al., 1992; Hansen and Ostermeier, 2001; Mordecai, 2003;
Walster and Hansen, 2004; Srinivas and Rangaiah, 2007; Yang,
2010; Yang and Deb, 2010; Walton et al., 2011; Gandomi and Alavi,
2012; Wang et al., 2013), and are generally classified as either deter-
ministic or stochastic. Deterministic methods often require a large
amount of computational time, as well as restrictions on the conti-
nuity and convexity of the objective function such as with cutting
plane (Mordecai, 2003), branch and bound (Land and Doig, 1960)
and interval analysis algorithms (Walster and Hansen, 2004).

Conversely the stochastic methods require very limited infor-
mation on the nature of the optimization problem, and are able to
handle issues pertaining to discontinuity and convexity. The com-
puting time is generally reasonable and convergence to the global
optimum is highly probable.

Metaheuristic optimization techniques are a sub category of the
stochastic methods and involve an intelligent selection of random
variables, often modelled around natural activities such as the cool-
ing and heating of metal (simulated annealing, Kirkpatrick et al.,
1983), the evolution of a species (differential evolution, Srinivas
and Rangaiah, 2007), the swarm intelligence of insects (ant colony
Dorigo, 1992, and firefly algorithms Yang, 2010), or the reproduc-
tion strategy of cuckoos (Cuckoo Search) (Walton et al., 2011; Yang
and Deb, 2010). Each technique has its own strengths and weak-
nesses, the revision of which is beyond the scope of this work.
Rashedi et al. (2009) state that, to date (2009), no single stochastic
technique is capable of solving all optimization problems of differ-
ent types and structures. The Krill Herd algorithm introduced by
Gandomi and Alavi (2012) is a metaheuristic based on the simu-
lation of the behaviour of a herd of the Antarctic krill crustacean,
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