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a  b  s  t  r  a  c  t

The  following  work  shows  the  application  of two  methods  of  stochastic  economic  optimization  in  a
hydrogen  consuming  plant:  two-stage  programming  and  chance  constrained  optimization.  The system
presents  two  main  sources  of  uncertainty  described  with  a binormal  probability  distribution  function
(PDF).  Both  methods  are  formulated  in  the continuous  domain.  For  calculating  the  probabilistic  con-
straints  the  inverse  mapping  method  was  written  as a nested  parameter  estimation  problem.  On  the
other  hand,  to solve  the  two stage optimization,  a discretization  of the  PDF  in  scenarios  was  applied
with  a scenario  aggregation  formulation  to take  into  account  the  nonanticipativity  constraints.  Finally,  a
framework  generalizing  this  solution  based  on  interpolation  was  proposed.  Both  optimization  methods,
two-stage  programming  and  chance  constrained  optimization,  were  tested  using  Monte  Carlo  simulation
in  terms  of  feasibility  and  optimality  for the application  considered.  The  main  problem  appears  to be  the
large  computation  times  associated.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Uncertainty is always present in the operation of processes.
Therefore, when optimal decisions have to be made, differences
between the model and the reality must be considered in order to
propose feasible actions. In this paper, two approaches have been
used to deal with this problem for a hydrogen consumption pro-
cess in a desulphurisation unit in which changes in the operating
conditions take place.

In the classical approach of optimization, equations and param-
eters are considered totally known. However, when the computed
solution is applied to the reality, frequently the value of the objec-
tive function is worse than expected and/or the constraints are
violated (Birge & Louveaux, 1997; Rockafellar, 2001; Wendt, Li,
& Wozny, 2002). These problems can be attributed to the uncer-
tainty that affects the system (Wendt et al., 2002). Usually, the
behaviour of the uncertain parameters can be described using ran-
dom variables named �, that belong to a probability space with a
given probability distribution function (PDF).

One of the first attempts to solve optimization problems explic-
itly considering the uncertainty in the processes, appears in the
work of Grossmann and co-workers introducing the concept of
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flexibility (Grossmann, Halemane, & Swaney, 1983; Halemane &
Grossmann, 1983). Also some works based on optimization under
uncertainty using stages of decisions (Beale, 1955; Dantzig, 1955)
were modified to be used in the process industry (Pistikopoulos
& Ierapetritou, 1995; Rooney & Biegler, 1999, 2001, 2003). Addi-
tionally, this formulation has been used for discrete values of the
random variables by means of the optimization over scenarios
(Birge & Louveaux, 1997; Dupačová, Consigli, & Wallace, 2000).
According to some authors, the idea behind methods with stages
of decision is not very adequate for process control, because of the
interaction between the decisions in different stages, and the com-
pensative decisions that must be taken (Arellano-Garcia & Wozny,
2009; Li, Arellano-Garcia, & Wozny, 2008; Wendt et al., 2002).
That’s why  these authors propose the chance constrained formu-
lation to be used in process optimization. For further information,
an extensive recompilation can be found in the work of Sahinidis
(2004).

In this work, both methods, two-stage optimization and chance
constrained optimization, have been used for solving the stochastic
optimization of a hydrogen consumption problem in a typical plant
of a petrol refinery. In contrast to other approaches that appear
in the literature, the stochastic dynamic optimization problem
has been solved in the continuous time domain using a sequential
approach. To do this, a control vector parameterization was used,
combining optimization methods and dynamic simulation. Two
changes have been proposed in the stochastic methods according
to the continuous formulation. In the implementation step of the
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two-stage one, an interpolation method is presented to face the
loss of generalization that takes place when scenarios are used
to describe the continuous PDF and an open loop policy must be
applied. In the same way, in the chance constraint method, a new
approach for calculating the limits of the probability integrals as
the solution of a parameter estimation problem has been proposed.
The optimization results obtained with these methods were tested
and analyzed using Monte Carlo simulations.

The structure of this paper is as follows: Section 2 presents a
brief introduction to the stochastic optimization methods. Section
3 presents the operation of the hydrodesulphurisation unit and the
application of the stochastic optimization methods to its optimal
management. Next, Section 4 shows the outcomes of the optimiza-
tion and discusses the results using Monte Carlo simulations with
the generalization method proposed. The paper ends with some
conclusions and comments about future work.

2. Optimization under uncertainty

In general, a problem of dynamic optimization under uncer-
tainty can be summarized as:

minu f (x, u, �, tf )

s.t. :

h(ẋ, x, u, �, t) = 0

g(ẋ, x, u, �, t) ≤ 0

x ∈ X, u ∈ U, ∀� ∈ �, t ∈ [t0, tf ]

(1)

Where x is the vector of states, u are the decision variables, t
is time and � represent the uncertain variables that have a random
behaviour which can be described using a certain probability distri-
bution function (PDF), named �.  The process model is given by the
set of equations h, and the cost function to be minimized is repre-
sented by f, while g denotes the constraints on the model variables
that must be fulfilled for all the possible values that the random
variable may  have.

Many practical problems can be formulated as (1) due to the
presence of unknown elements. The nature of the uncertainty can
be very different, ranging from fairly constant but unknown values
(e.g., compositions of a stream) to values that change continu-
ously in a random way (e.g., wind). It is important to mention that
the uncertain variables can affect the optimization problem in a
general way, noting that these variables might be unknown param-
eters or independent variables that depend on other systems. In all
the cases, it can be expected that the random behaviour will be
propagated to the states and the output variables. With respect to
the solution methods to cope with this uncertain behaviour, two
approaches have been chosen considering the application target.

2.1. Two-stage formulation

In two-stage formulation the key idea is that we should take
decisions at present time, taking into account that, after a certain
period of time, more information will be available as measurements
or known facts that will contribute to decrease the incertitude from
that time on. So, when decisions have to be made over a time
horizon, there are stages of decision that differ in the degree of
knowledge of the uncertain variable: in the first one (stage 0) a
choice must be made knowing the initial conditions of the system
and without any certainty about the random variables except that
they belong to a certain PDF. Then, in the second stage (stage 1),
the decision variables can be chosen taking into account that the
value of the random variable is available (measured or estimated)

(Dantzig, 1955). If the subscripts denote the decision stages, the
general problem can be formulated as (Rockafellar, 2001):

minu E�[f0(u0,  x0(�),  �)  +  f1(u1(�),  x1(�),  �)]

s.t.  :

g0(u0, x0(�),  �)  ≤  0

g1(u1(�),  x1(�),  �)  ≤  0

h0(ẋ0(�),  x0(�),  u0, �,  t)  =  0,  x0(�,  t0)  =  x0,i,  t ∈  [t0,  t1]

h1(ẋ1(�),  x1(�),  u1(�),  �,  t)  =  0,  x1,i(�)  ≡  x1(�,  t1) =  x0(�,  t1),  t  ∈  [t1,  tf ]

xk ∈  Xk, uk ∈  Uk, k  =  {0,  1}
∀�  ∈  �

(2)

In Eq. (2), u0 and u1(�) represent the decision variables applied
in stages 0 and 1 respectively. Notice that these variables can take
values according to a certain parameterization in each stage, but
the notation has been shortened for simplicity. The initial states
for both stages are represented as x0,i and x1,i(�) for stage 0 and 1
respectively, the second obtained as a result of the decision vari-
ables applied previously. It can be noted how the value of the
uncertain parameter affects the evolution of the state variables in
both stages. The functions that must be minimized are denoted as
f0 and f1 for each decision stage. Due to the fact that these functions
depend on the value of the random variables, their mean value (E�)
must be used to group all these scenarios in a single objective func-
tion to be minimized. The model of the process and the inequality
constraints are represented by {h0, h1} and {g0, g1} for both stages
respectively.

In order to solve this problem for a continuous PDF, a nested
numerical integration is required (Birge & Louveaux, 1997). Alter-
natively, it is possible to discretize the original PDF (D-PDF)
producing a finite number of values for the random variable (sce-
narios) and then solve problem (2) using a weighted sum of the
cost function (Birge & Louveaux, 1997; Dupačová et al., 2000;
Ruszczynski & Shapiro, 2003; Sahinidis, 2004). The problem with
the scenario approach is the loss of generalization in the opti-
mization, because the solution is valid only for the discrete values
considered, but it permits obtaining solutions that otherwise will
not be available.

In this work, the scenario formulation was  used with the two-
stage approach described previously. From the point of view of
the uncertain variable �, the situation can be represented in the
schematic of Fig. 1(a), where in stage 0 we  must consider that it

Fig. 1. Information about the stochastic variable in two-stage approach.
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