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In this paper we describe and evaluate an isogeometric finite element program, IFEM-FSI, for doing
coupled fluid-structure interaction simulations. We investigate the role played by employing higher
polynomial orders and higher regularity for solving a well known benchmark problem for flow past a
circular cylinder with an attached flexible bar at Reynolds number Re=100. Furthermore, we investigate
the sensitivity to resolution in the fluid mesh as well as stiffness distribution in the mesh movement
algorithm. Mesh quality is also assessed. Our simulations indicate that quadratic and cubic spline ele-
ments give better estimation of lift, drag and displacements than linear spline elements.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Interaction between fluids and marine structures like mono-
piles and turbine support structures results in vortices which
cause problems like scouring (Breusers and Raudkivi, 1991) of the
seabed and vortex-induced stresses in the structures. Various
techniques (De Vos et al., 2011, 2012; Nielsen et al., 2010; De
Sonneville et al., 2010) are being used to prevent the scouring
phenomena ranging from the use of different materials to cover
the seabed to the use of smart designs of the monopile's base to
break the vortices. Most of the time these techniques depend on
rigid structures. Optimizing their design is relatively simpler be-
cause state-of-the-art Computational Fluid Dynamics (CFD) codes
can simulate the flow structures and hence the design effective-
ness. Other methods for breaking or weakening the vortices can
also be thought of; like the use of flexible structures attached to
the monopiles to alter the behavior of the shedded vortices.
Modelling the effectiveness of such concepts will involve coupled
fluid—-structure interaction simulations. The simulations are com-
plicated by the fact that they require a dynamic mesh and an ac-
curate representation of the deformed geometry under the influ-
ence of forces throughout the simulation time. Classical simulation
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methods based on linear finite elements do not represent the
geometry in an exact sense and introduce errors which can be
reduced only by using a very high resolution. Fortunately, a new
discretization method based on isogeometric analysis appears
promising in this context. Isogeometric analysis (IGA), introduced
in Hughes et al. (2005), has demonstrated that much can be gained
in this respect by replacing the traditional low-order finite ele-
ments (FE) by volumetric NURBS (Non-Uniform Rational
B-Splines). Spline approximations have some desirable properties
both with respect to geometrical representation and analysis, since
both the order and the smoothness of the basis functions can be
easily changed. In particular, numerical results indicate that in-
creased continuity of the finite element basis improve the ap-
proximation of both material stresses in structural analysis and
sharp boundary layers in CFD analysis (Akkerman et al., 2008). An
overview of recent developments in the field of isogeometric
analysis can be found in Nguyen et al. (2015).

In this paper we apply the isogeometric finite element ap-
proach to the well known FSI benchmark problem presented in
Turek and Hron (2006) and Turek et al. (2010) as a first step to
demonstrating its benefits. The paper starts with a mathematical
description of the method in solving fluid structure interaction
problems. The description includes the fluid and structure solvers
based on mass and momentum conservation equations. The
equations are solved on a dynamic mesh to accommodate the
geometry changes so a mesh mover is explained in the same
section. Finally the set-up is described followed by results and
conclusions.
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2. Theory

Here we present the theory behind our fluid and structural
solvers, along with details of how they are coupled and how the
mesh movement is done. Mesh generation is also explained. The
fluid domain, consisting of an incompressible Newtonian fluid, is
denoted £, while the structural domain, consisting of an elastic
solid, is denoted £2°.

2.1. Fluid solver

The flow is mathematically described by the incompressible
Navier-Stokes equations which read

ouf . .

— +p(uf-Vuf —ve(uf,p)= inQfvuf=0 inQf
s p(ul-v) o(u!, p) = pof a
In this setting @ € R, d=2,3, is a suitable, sufficiently regular and
open domain, p is the constant fluid density, p is the pressure, u/ is
the fluid velocity vector and f is a volumetric body force. The
Cauchy stress tensor can be written as

c;(uf, p): —pl+ 2u€(uf),

where [ is the identity tensor, ¢ the dynamic viscosity and the
strain rate e is defined asFurthermore we define the boundary to
be 0@/ =rf=rjururj in order to handle boundaries with
Dirichlet, Neumann or mixed boundary conditions. We denote 7,
the boundaries with Dirichlet conditions, /% the boundaries with
Neumann conditions and I, the boundaries with mixed condi-
tions. Mixed boundary conditions are used in situations where the
normal velocity component is given, usually zero, together with
the tangential stresses, and can model symmetry planes and slip
or friction conditions.

The variational formulation can now be expressed as follows:
Find W/, p) € U x Q such that

[p"Lf, v)+c(uf; ul,v) + b, v) + a(w/, ul) + b(q, uf) = f(v) (

ot 2)

for (v, q) € V x Q. We have defined the spaces

U=Hp,ry(@) = {v € H(@)v =u} on Ip and v-n = uf on FM}V
= Hpp 0@ = {v e H'(@)lv=0on I} and v.n = 0 on FM}Q
= [AQ),

where uj, and uf both are given functions and n is the unit outer
normal on /. We have also defined the forms

aw!, v) =2 / peh): e(v) dxb(q, v) = — / (V-v)q dxcw; u’, v)
Q Q
= . f. = L X
/Qp(wV)u v dxf(v) /prv dx+/rNtvds,
where t = 6-n is the traction vector on /.

2.1.1. Isogeometric finite element approximation

In this work we employ an isogeometric finite element method
similar to what was introduced in Hughes et al. (2005) and pre-
sented in Cottrell et al. (2009). The isogeometric finite element
method approximates the solution by using a spline basis of
polynomial order p and regularity CP-1. In traditional finite ele-
ment formulations C° Lagrange polynomials of low order (typically
p=1 or p=2) are used. Our approach is based on a conforming
finite element approximation, i.e.

U,cU V,cV, QpcQ.

The discrete approximation spaces Uy, Vj, and Qy, are chosen as the

isogeometric finite element spaces. This gives the semi-discrete
formulation of the variational problem stated in Eq. (2): Find
(uf{, ph) € Uy x Qy such that

ou
] :
[p?, vh] + c(u,{, u/, v,,) + a(u,{, uhf) + b, vy

+ b(q, uhf) =f(vn) 3)

for all (v, q,) € Vi, x Qp.

As described in Nordanger et al. (2015) we have developed a
block-structured B-spline isogeometric finite element approxima-
tion of the Navier-Stokes equations described above. A domain £2
can be subdivided into a number of patches (2, such that
Q = Ul; Q., where what we call a patch is equivalent to a block. To
construct a B-spline basis for £2 we associate for each patch a knot-
vector in each coordinate direction

[=i4 e e e
Z = {51,1« Sakr - ffn,§+p;g+1,k}

for k =1, ..., d. Here, n,° is the number of B-spline basis functions
associated with the knot span. The B-spline basis for patch €2, on

(4
the parametric domain 6= (0, 1! is written as §5e where the
multi-indices a® = (af, ..., a$) and p°®=(p;, ..., p;) denote the
regularity and order for the basis in each coordinate direction,
respectively. The corresponding basis for the physical domain £2,
can be expressed using the coordinate mapping ¢,: o Q. as

p° _
Sme = {Vh

If the variational formulation allows a discontinuous approxima-
tion the spline finite element basis for the domain £2 can be de-
fined as

N
Vho¢e € Sae}'

e
Sh = { Vh‘Vh\_Qe S Sge }

If we assume that the knot-vectors and geometrical mapping ¢,
for all the patches are consistent on common edges and faces we
can define a continuous basis

Sp = {vh € C(@)|via, € S¥ }

We use the same basis for the geometry as for the discretization of
the velocity and the pressure.

2.1.2. Projection method
In order to solve the mixed variational problem given in Eq. (3)
the following inf-sup condition

inf b(qy, vn)

——>(C>0.
ah€Qhan#Ovpevpvpz0 Il Gn ||L2(Q)|| Vh ”I-ﬂ(_Q)

needs to be satisfied in order to avoid spurious pressure modes
(Brezzi, 1974). This imposes restrictions on the choices of V, and
Q.
Traditionally a mixed finite element method with different
approximation spaces for pressure and velocity is required. In this
work we use a pressure correction projection scheme which al-
lows for equal-order approximation of the velocity and pressure.
This is based on the work pioneered by Chorin (1968) and Temam
(1969) in the late 1960s. In order to stabilize the equal-order ap-
proximation we employ Minev stabilization as described in Minev
(2001). A backward differentiation formula of order 2 (BDF2
scheme) is used for the time integration.
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