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a b s t r a c t

In steep multi-chromatic seas, ship surge dynamics can become intricate and the full variety of exhibited
motions is unknown. This accrues, partly, from the nonlinear nature of surge motion; and partly because,
for multi-frequency waves, the phase-space flow of the dynamical system becomes time-dependent.
Accordingly, conventional concepts that were applied in the past for analyzing stationary phase-space
flows are rendered incapable to support in-depth exploration of ship dynamics. Towards overcoming this
limitation, use of the concept of hyperbolic Lagrangian Coherent Structures (LCSs) is proposed. These
phase-space objects can be regarded as the “finite-time” generalizations of the stable and unstable
manifolds of hyperbolic fixed points defined in “time-invariant” dynamical systems. They can be
described as, locally, the strongest repelling or attracting material surfaces (curves in the case of 2-
dimensional systems) advected with the phase flow. We have identified hyperbolic LCSs that are innate
to the phase-flow associated with the surge motion of a ship in astern seas. To the global approach of LCS
identification, a supplementary computational scheme is incorporated, aiming to track, in space-time,
local “features” of the flow, connected with surf-riding. The emerging toolset can enhance current efforts
towards a rigorous assessment of ship dynamic stability in following seas.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanisms generating surf-riding behaviour for a ship
operating in regular following seas have been extensively studied
in the past (e.g. Kan, 1990; Spyrou, 1996). However, gaining
understanding beyond the context of harmonic waves has been
considered daunting; because the multi-frequency wave field
brings-in new qualitative features in ship response, by-and-large
as yet unrecognised, descending from the time-dependent nature
of the system's phase flow.

For “regular sea” scenarios, it is well known that surf-riding can
be identified as an equilibrium solution of the surge equation of
motion. Such solutions may appear in coexistence with the
ordinary periodic type of ship surge response, or they may even
entirely dominate the surge behaviour of a ship. A detailed
account of progress on understanding the nonlinear surging and
surf-riding of a ship in harmonic waves can be found in Spyrou
(2006). Consideration, though, of more general wave forms
introduces profound complications. For irregular seas, the key
description of surf-riding as a stationary state needs to be reap-
praised, since one cannot reasonably assume that the underlying

non-autonomous dynamical system will admit constant solutions.
Hence, a broader definition of surf-riding is entailed.

With these difficulties recognized, a phenomenological approach
to surf-riding in irregular seas has been proposed recently,
expanding upon the notion of wave celerity and its role in signalling
a ship's capture to surf-riding (Spyrou et al., 2012, 2014a). In parti-
cular, definition and methods for the calculation of wave celerity for
an irregular seaway were proposed and their relevance to the pro-
blem of surf-riding was evaluated. The appeal of such an approach is
that it enables a straightforward statistical approximation of the
probability of surf-riding in irregular seas, by setting up a direct
counting scheme of velocity threshold exceedances.

In another recent work, Belenky et al. (2012) endeavoured to
gain insight into the surge dynamics in multi-chromatic following
waves through the identification of the points of the wave profile
where, equilibrium of forces along ship's longitudinal direction is
instantaneously satisfied. For the calculation of such points, cel-
erity of irregular waves, whereabout ship's position, must be
known. This technique could be useful, in some instances, as an
approximate calculation scheme.

Also, Spyrou et al. (2014b) examined the possibility of
extracting and tracking “features” related to the surge dynamics in
irregular seas. The word “feature” is attached here to any object
ostensibly relevant to the realisation of surf-riding. It was dis-
covered that, such features can be identified among the elements
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of the zero set of the “acceleration field” i.e., points of the phase-
plane where the acceleration and its time derivative attain,
instantly, zero values.

In the current work, methods having potential to yield insight
into the dynamics of the surge motion in multi-chromatic astern
seas are employed. In particular, the concept of hyperbolic
Lagrangian Coherent Structures is applied and its capacity in
unveiling the changing-in-time organization of system's phase
flow is evaluated. Through their organizing role, these structures
can be considered as analogues of the stable and unstable mani-
folds of hyperbolic fixed points defined in autonomous dynamical
systems. For their identification, one can choose among a number
of different methods. Here, a popular numerical scheme is selec-
ted, based on the calculation of the spatial distribution of the
largest finite-time Lyapunov exponent. Furthermore, a scheme
aiming to the tracking of critical points of the vector field, defined
by the value of acceleration along the surge direction and of its
material derivative, is applied. This supplementary numerical
scheme is based on the Feature Flow Field concept, which
addresses the problem of feature tracking in non-stationary flow
fields (Theisel and Seidel, 2003).

With the current work it is aimed to propose concepts and
toolsets which can enable deeper understanding of the surf-riding
and broaching-to behaviour in irregular seas. Such phenomena of
extreme ship behaviour currently receive detailed attention at IMO
and, it is expected that they will be covered in future legislation as
additional dynamic stability requirements (Peters et al., 2011).

2. Concepts and computational tools

2.1. Lagrangian Coherent Structures

The concept of Lagrangian Coherent Structures seems to have
emerged as result of the interbreeding of ideas originating from
the fields of dynamical systems theory and fluid dynamics.
Although the term was firstly introduced by Haller and Yuan
(2000), many people have contributed in the development of
computational strategies for their identification – for a short
review see Shadden (2011). LCSs have been extensively used
during the last years in a wide range of applications concerning
physical and biological flows, while the theory, as well as efficient
calculation methods, are still developing.

Although one can select among different schemes for the iden-
tification of hyperbolic LCSs [such as the finite-size Lyapunov
Exponent (FSLE) approach, or the variational theory of hyperbolic
LCSs developed recently by Haller (2011) that enables a more rig-
orous computation] for the needs of the current study we will
consider a widely used computational procedure involving the cal-
culation of the largest finite-time Lyapunov exponent (FTLE) field.

Let us consider the following dynamical system that defines a
flow on the plane,

_x ¼ f x; tð Þ; xAD�ℝ2; tA t� ; tþ
� ��ℝ ð1Þ

A trajectory of system (1) at time t, starting from the initial
condition x0 at t0, will be denoted by x t; t0; x0ð Þ. We can write for
the flow map Ftt0 x0ð Þ of (1),

Ftt0 : D-D

x0↦x t; t0; x0ð Þ ð2Þ

Through (2), the phase-particle passing from x0 at time t0 is
associated with its position at time t. We, furthermore, consider
two infinitesimally close phase-particles, located at x0 and x0þδ0
at time t0. The magnitude of the linearized perturbation at time

t0þτ is given by (see, e.g. Shadden (2011)),

‖δ‖¼ ‖∇Ft0 þ τ
t0 x0ð Þδ0‖¼ ‖δ0‖

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eT0 ∇Ft0 þτ

t0 x0ð Þ
h iT

∇Ft0 þ τ
t0 x0ð Þe0

r
ð3Þ

In the above, e0 is the unit vector along the direction of δ0, A
T

denotes the transpose of A, while ∇Ft0 þτ
t0 x0ð Þ is the deformation

gradient and Ct0 þτ
t0 x0ð Þ ¼ ∇Ft0 þτ

t0 x0ð Þ
h iT

∇Ft0 þ τ
t0 x0ð Þ is the right Cau-

chy–Green deformation tensor, both evaluated at x0. C
t0 þ τ
t0 x0ð Þ is a

real symmetric, positive definite tensor and, as such, it has real
positive eigenvalues, λi; i¼ 1;2. Moreover, the corresponding
eigenvectors, ei, i¼ 1;2, form an orthonormal basis.

The Cauchy–Green deformation tensor provides a measure of
how line elements in the neighbourhood of x0 deform under the
flow; i.e., how the lengths and the angles between line elements
change, when considering the configuration in the close vicinity of
x t; t0; x0ð Þ at times t0 and t0þτ. A circular blob of initial conditions
centred at x0 will evolve into an ellipse, with the major (minor)
axis aligned with the direction of the eigenvector e2 e1ð Þ. The
coefficients of expansion along these directions will be given byffiffiffiffi
λi

p
, i¼ 1;2.
The finite-time Lyapunov exponents are defined as follows,

Λi ¼
1
τj j ln

ffiffiffiffi
λi

p
; i¼ 1;2 ð4Þ

The largest FTLE, Λ2, is usually referred to as “FTLE” without
distinction. By virtue of (4), Λ2 can be regarded as a time-averaged
measure of stretching and therefore, as a (rough) measure of a
trajectory's hyperbolicity. Yet, as noted by Haller (2011) and
Shadden (2011), this does not hold in general.

Through the calculation of the spatial FTLE distribution, the
identification of LCSs is made possible. The latter will appear as
local maximizing curves of the FTLE field. Typically, the calculation
of the field is performed on the basis of a structured grid of initial
conditions spanning a considered domain at a given time t0. The
grid is integrated over a specified time interval τ, using a numer-
ical integration algorithm. Once the final position of each grid
point is calculated, the deformation gradient is obtained by
implementing a finite difference scheme on the nodes of the initial
grid. In the final step of the procedure, the largest eigenvalue of
the deformation gradient is computed and the FTLE field is cal-
culated directly from expression (4). The location of repelling/
attracting LCSs can be identified as ridges of the FTLE field when
forward/backward integration times are considered.

2.2. Feature tracking

According to Spyrou et al. (2014b), “features” relevant to the
problem of surf-riding in multi-chromatic waves can be identified
on the basis of critical points of a planar vector field, with coor-
dinates that correspond to the acceleration, along the surge
direction, and its material derivative. The paths of such features
can be calculated using the Feature Flow Field (FFF) method. With
respect to the latter, and given a vector valued function of the
form,

a x1; x2; tð Þ ¼ a1 x1; x2; tð Þ; a2 x1; x2; tð Þð Þ ð5Þ

a three-dimensional vector field w x1; x2; tð Þ is constructed, by
demanding that vector w points toward the direction of minimal
change of a in a first order approximation. This direction is defined
by the intersection of the planes perpendicular to ∇a1 and ∇a2,
where the ∇ operator is related to the three-dimensional Euclidian
space with coordinates x1; x2; tð Þ (Theisel and Seidel, 2003). Thus,

w¼∇a1 � ∇a2 ð6Þ
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