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a b s t r a c t

This paper presents a practical technique to evaluate the Percus–Yevick (PY) radial distribution function
(RDF) for a water-saturated granular medium with a high volume fraction of grains. This is based on the
weighted average of the PY RDF's recursive formula (Goodwin et al., 1992) and the PY integral equation's
numerical solution using the filtered fast Fourier transform. In a highly dense medium, the combination
of both models produces more accurate and stable results. The error analysis for the volume fraction of
scatterers and the distance is given for validation. Finally, using the proposed PY RDF result, we solve an
acoustic multiple-scattering equation with quasi-crystalline approximation (QCA) to obtain the effective
bulk modulus and attenuation of the water-saturated granular medium, and confirm that our method
provides a reasonable result.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The radial distribution function (RDF) describes the particle
distribution from a reference particle in a granular medium. In a
classical fluid, an analytic expression of RDF can be obtained by
solving the Ornstein–Zernike integral equation with the closure
relation of Percus and Yevick (PY) (Wertheim, 1963). The PY RDF is
an approximate result, which has successfully been applied in
various fields from molecular physics to ocean sediment physics
(Smith and Henderson, 1970; Henderson, 2009; Tsang and Kong,
1980; Caleap et al., 2012; Varadan et al., 1989).

The PY RDF evaluation can be performed by calculating the
analytic formula for the inverse Laplace transform, where the
high-order derivatives rise as the distance increases. Goodwin
et al. (1992) derived a recursive formula to calculate high-order
derivatives and evaluated the PY RDF up to 20d with a hard sphere
diameter, d. Although their results were better than those in other
similar studies, the repetitive arithmetic multiplication and divi-
sion still leads to numerical instability in distances above 15d
(Goodwin et al., 1992). Similar numerical errors occurred in the
numerical solution based on the difference equation derived from
the Baxter factorization method (Perram, 1975). Kahl and Pastore
(1991) directly solved the inverse Laplace transform without ker-
nel expansion at a short distance. At a long distance, they applied
the asymptotic method to the calculation. A drawback of this

method is that the complex roots of the kernel denominator are
found numerically (Goodwin et al., 1992). A more efficient method
would be to use the Fourier transform of the direct correlation
function (DCF) (Mandel et al., 1970; Tsang et al., 2001). The PY RDF
is obtained from the inverse transform of the relation of DCF and
RDF in the Fourier domain. This method is fast, but still has
numerical errors due to the Gibbs phenomenon (in particular at
the first contact of the sphere (Tsang et al., 2001)) and aliasing.

In general, difficulties in the aforementioned numerical meth-
ods are not significant problems in a weakly dense medium with a
volume fraction below 0.4. This is because the PY RDF in a diffused
medium shows relatively regular behavior and rapidly converges
to 1 at distances over 4d (Tsang et al., 1982). However, in highly
dense packing such as sand, gravel, or artificial balls (Aste et al.,
2005; Panaitescu and Kudrolli, 2010; Lee et al., 2009), the PY RDF
goes up sharply at the beginning distance, and exhibits much
slower convergence for distance. In this case, the aforementioned
methods fail to yield a stable value for the PY RDF, which will be
entered into a main acoustic solver.

The purpose of this study is to develop a more accurate and
stable solver of PY RDF in highly dense packing. We suggest a
hybrid technique using the analytic evaluation method for short
distances and the filtered Fourier-transform method for long dis-
tances. This method is easy to implement with existing algorithms,
and provides very good results up to 60d for the volume fraction of
0.6. Moreover, we confirm that the proposed method is sufficiently
applicable to an acoustic multiple-scattering problem for a highly
dense medium.
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This paper is categorized as follows: Section 2 provides the
details of our approach with the description of the analytic eva-
luation method and the Fourier transform method. In particular,
the use of a filter is considered to suppress the Gibbs phenomenon
in the original Fourier-transform method (Gottlieb and Shu, 1997).
The section also deals with the validation test and error analysis as
a function of the volume fraction of scatterers and of the distance.
Section 3 describes an application of the proposed technique to an
acoustic multiple-scattering problem for highly dense spheres. The
conclusion is presented in Section 4.

2. Hybrid approach

2.1. Analytic evaluation method

Following the Smith and Henderson (1970) expression, the PY
RDF for uniform spheres is written as

gðxÞ ¼
X1
n ¼ 1

Hðx�nÞgnðxÞ; ð1Þ

where HðxÞ is the Heaviside step function with 0 for xo0 and 1 for
x40, x is the scaled distance of r=dwith the distance r, and gnðxÞ is
a piecewise continuous function defined as follows.

xgnðxÞ ¼
ð�12ηÞn�1

ðn�1Þ!
X2
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lim
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dn�1

dtn�1 ðt�tiÞnt
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� �

;

ð2Þ
where

LðtÞ ¼ ð1þ0:5ηÞtþ1þ2η; ð3Þ

SðtÞ ¼ ð1�ηÞ2t3þ6ηð1�ηÞt2þ18η2t�12ηð1þ2ηÞ; ð4Þ
and ti is each root of the cubic polynomial SðtÞ. η is the volume
fraction of spheres and relates to the number density ρ as
η¼ πρd3=6.

To simplify Eq. (2), Goodwin et al. factorized SðtÞ into the monic
polynomial ð1�ηÞ2ðt�t0Þðt�t1Þðt�t2Þ and substituted it into
Eq. (2). The result is rearranged as
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lim
t-ti

dn�1

dtn�1

tLnðtÞ exp ½tðx�nÞ�
ðt�aÞnðt�bÞn

� �
;

ð5Þ
where a and b are the other two roots of SðtÞ excluding ti.

The high-order derivatives of brackets in the above equation
can be easily calculated by the recursive formula derived by
Goodwin et al. (1992). Although Eq. (5) is an analytic form, it is
noted that the arithmetic operations are numerically performed by
a computer. As indicated in Ref. Goodwin et al. (1992), this method
shows numerical instability above 15d for hard spheres of
η¼ 0:47. We calculate Eq. (5) for the volume fraction of spheres
and check similar tendencies, plotted in Fig. 1. The sphere dia-
meter used in the calculation is set to 0:545 μm and identical for
all following examples.

2.2. Fourier transform (FT) method

With spherical symmetry assumption, the DCF is written in the
Fourier domain k as

cðkÞ ¼ 24η
ð2πÞ3ρ

ðαþβþδÞ
ðkdÞ2

cos kd�ðαþ2βþ4δÞ
ðkdÞ3
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"

�2ðβþ6δÞ
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#
; ð6Þ

where α¼ ð1þ2ηÞ2=ð1�ηÞ4, β¼ �6ηð1þη=2Þ2=ð1�ηÞ4, and δ¼ η
ð1þ2ηÞ2=2ð1�ηÞ4 (Tsang et al., 2001).

The relation between the DCF and the total correlation function
hðkÞ is obtained from the Ornstein–Zernike integral equation and
given as hðkÞ ¼ cðkÞ=½1�ð2πÞ3ρcðkÞ�.

Since gðrÞ ¼ hðrÞþ1 in the physical domain r, the PY RDF is
simply obtained by taking the inverse Fourier transform of hðkÞ.
The final expression is arranged to

gðrÞ ¼ 4π
Z 1

0
k2

sin kr
kr

� �
hðkÞdkþ1: ð7Þ

Note that due to spherical symmetry, the 3D integral transform
is reduced to 1D integral transform.

Due to the ‘no overlapping’ condition between particles, the PY
RDF is inherently discontinuous at r¼ d. This discontinuity causes
the Gibbs phenomenon in the numerical evaluation. This is the
main reason that the high-order convergence of this method is
degraded and the numerical accuracy of the solution is reduced.

To mitigate the Gibbs phenomenon, we apply the Lanczos filter
(Gottlieb and Shu, 1997; Duchon, 1979; Vandeven, 1991) into

Fig. 1. Absolute value of PY RDF minus one versus the scaled distance for volume
fractions of 0.1, 0.3, 0.5 and 0.6 calculated by Eq. (5).

Fig. 2. Comparison of the original and filtered FT method as a function of the scaled
distance for the volume fraction of 0.1.
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