Contents lists available at ScienceDirect

Free transverse vibration of ocean tower

Ankit*, Nabanita Datta

Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, Kharagpur, West Bengal 721302, India

ARTICLE INFO

Article history: Received 23 November 2014 Accepted 22 July 2015 Available online 27 August 2015

Keywords: Timoshenko beam Rayleigh Ritz Method Finite Element Method Non-uniform beam Eccentric tip mass

1. Introduction

The dynamic behavior of structures like ocean tower is an area of extensive research. These structures are widely used to support superstructures like wind turbine, bridges etc. The ocean towers are often subjected to dynamic loads such as wind, waves, etc. Hence, it is important to analyze the dynamic behavior of such structures. These dynamic behaviors can be predicted with reasonable accuracy if the structures are modeled as beam with tip mass and non-classical foundation. Hence, a lot of research has been done to study the problem in this field. For example, Wu and Hsu (2007) analyzed the free vibration of partially wet, elastically supported uniform Euler-Bernoulli beam with eccentric tip mass using two separate sets of analytical formulation. Uscilowska and Kolodziej (1998) provided closed form solution for a partially immersed cantilever beam with eccentric tip mass. Auciello and Ercolano (2004) provided solution for the non-uniform Timoshenko beam to solve the free vibration by the energy method. Wu and Chen (2005) solved the free vibration of nonuniform partially wet Euler-Bernoulli beam with elastic foundation and tip mass. De Rosa et al. (2013) calculated closed form solution for free vibration of a linearly tapered, partially immersed, elastically supported column (Euler-Bernoulli beam) with eccentric tip mass. Wu and Chen (2010) studied the wave-induced vibrations of an axialloaded, immersed, uniform Timoshenko beam carrying an eccentric tip mass with rotary inertia using analytical formulation.

* Corresponding author.

E-mail addresses: ankitnaval05@gmail.com (. Ankit), ndatta@naval.iitkgp.ernet.in (N. Datta).

ABSTRACT

This paper studies a continuous, elastic model of an ocean tower, partially submerged in water, undergoing free transverse vibration in a plane. The tower is modeled as a non-uniform Timoshenko beam which is supported by an eccentric tip mass on one end and a non-classical damped foundation on the other. The foundation is modeled as a combination of translational and rotational springs and dampers. The effect of shear deformation and rotary inertia is included in the analysis. The free vibration equation is derived using Hamilton's variational principle based on two approaches, Rayleigh Ritz Method (RRM) and Finite Element Method (FEM), which show a good agreement in results. The computational efficiency of RRM over FEM is shown using a convergence study. Finally, a parametric study is done to demonstrate the dependence of natural frequency on different configurations of the tower.

© 2015 Elsevier Ltd. All rights reserved.

OCEAN

CrossMark

The vibration analysis of non-uniform Timoshenko beam as ocean tower has been rarely investigated as the authors know. In this work, the ocean tower is modeled as a partially submerged, non-uniform Timoshenko beam supported by a rigid tip mass with eccentricity at the free end, and non-classical damped foundation on the other end. The effect of shear deformation and rotary inertia in included in the beam. The free vibration equation is derived using Hamilton's variational principle based on Rayleigh Ritz Method (RRM) and Finite Element Method (FEM). The solution obtained by these two approaches show a good agreement in results. In RRM, the trial function, which is used to obtain non-uniform beam mode-shapes of ocean tower, is assumed as uniform beam mode-shapes satisfying the boundary conditions of ocean tower. In FEM, the Mindlin-type linear beam element of C⁰-order with four degrees of freedom, as explained in Bathe (1996), has been used as shape function. In order to avoid shear locking, reduced integration technique has been incorporated in FEM as explained later. Some of the results are also compared with one present in the existing literature for the verification of computer program and model.

The methodology (Hamilton's variational principle) involves an integral equation and hence, higher order non-uniformity in section area of beam can be handed easily. In both the approaches, i.e., RRM and FEM, the free vibration equation is derived by using this methodology. The difference 4between RRM and FEM lies in choosing the shape function for finding the solution. In RRM, the shape function is chosen over the entire beam while in FEM, it is chosen only for one element. Hence, the main challenge of finding the solution through RRM is satisfying all the boundary conditions using the same shape function. However, the benefit lies in its computational efficiency which is much higher than FEM. This is shown in the convergence study (Section 4.2) where the solution obtained by RRM

$ \begin{array}{lll} response (random length), & for a constant of c_r is a constant of c_r in the variable constant of c_r is a constant of c_r in the variable constant of c_r is the variable constant of c_r in the variable constant of c_r is the variable constant of c_r $	Nomenclature		η_r	proportionality constant of c_r
xspace variable along the beam length. $Emodulus of elasticity of the materialttime variableGshear modulusutransverse deflection of non-uniform beamk_0shape factor of the cross-section\thetapure bending slope of non-uniform beamvPoisson's ratioqprinciple coordinate of non-uniform beamv_FPoisson's ratio\sigma_0natural frequency of non-uniform beam\theta_Fpure bending slope of uniform beam\sigma_0inaginary part of \omega\sigma_Fprinciple coordinate of uniform beam\sigma_0inaginary part of \omega\sigma_Freal part of \omega_FD_pdiameter of the base of the tower\sigma_Finaginary part of \omega_FD_pdiameter of the upper uniform part of the tower\sigma_Finaginary part of \omega_Fm_{p0}reference tip massI_Fsectional area 2nd moment in uniform beamI_{p0}reference tip massI_Fsectional area 2nd moment of uniform beamI_protary inertia of tip massggravitational acceleratione_peccentricity of tip massguniform pare bending slope mode-shape (trial function)\zetarotary inertia ratio of tip mass\psinon-uniform pure bending slope mode-shape\rhodensity of steelnno.ot trial functions considered\rho_wdensity of steelnno.damping constantI_esection area of non-uniform beamKfocal space coordinatek_rrotary inerti$			η_t	proportionality constant of <i>c</i> _t
ttime variableGshare factor of the cross-sectionutransverse deflection of non-uniform beam k_0 shape factor of the cross-section θ pure bending slope of on-uniform beam v Poisson's ratio q principle coordinate of non-uniform beam v_F pure bending slope of uniform beam ω_R real part of ω q_F pure bending slope of uniform beam ω_R real part of ω ω_r natural frequency of uniform beam ω_R real part of ω ω_r natural frequency of uniform beam ω_R transmax part of ω ω_r natural frequency of uniform beam ω_R transmax part of ω ω_r natural frequency of uniform beam D_P diameter of the base of the tower ω_{F_R} transmax part of ω_r D_p diameter of the upper uniform part of the tower ω_r section area of uniform beam p_0 reference tip mass V_r shear force in uniform beam I_P totary inertia of tip mass q uniform beam mode-shape I_P cotary inertia of tip mass q uniform beam mode-shape ρ_q ensity of steel n non-uniform mode-shape γ tip mass ratio ψ uniform beam ρ_{e} density of steel n no. of trial function) γ t	x	space variable along the beam length.	Ē	modulus of elasticity of the material
utransverse deflection of non-uniform beam k_0 shape factor of the cross-section θ pure bending slope of non-uniform beam v Poisson's ratio a pure bending slope of non-uniform beam v Poisson's ratio a natural frequency of non-uniform beam θ_F pure bending slope of uniform beam a_R real part of a q_F principle coordinate of numbeam a_R real part of a a_F pure bending slope of uniform beam a_R real part of a a_F principle coordinate of uniform beam b_D diameter of the base of the tower a_F_F real part of a_F D_p diameter of the upper uniform part of the tower M_F bending moment in uniform beam m_{p0} reference rotary inertia of tip mass A_F section area of uniform beam I_{p0} reference rotary inertia of tip mass g gravitational acceleration a submergence ratio ϕ uniform beam mode-shape (trial function) α submergence ratio ϕ non-uniform pure bending slope mode-shape (trial function) ϕ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape (trial function) ϕ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape (trial function) ϕ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape (trial function) ϕ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape (trial functio	t	time variable	G	shear modulus
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	u	transverse deflection of non-uniform beam	k_0	shape factor of the cross-section
qprinciple coordinate of non-uniform beam u_F transverse deflection of uniform beam ω_R natural frequency of non-uniform beam θ_F pure bending slope of uniform beam ω_R real part of ω ω_F natural frequency of uniform beam ω_l imaginary part of ω ω_F natural frequency of uniform beamLlength of the beam without tip-mass ω_F real part of ω_F D_h diameter of the upper uniform part of the tower ω_F real part of ω_F D_p diameter of the upper uniform part of the tower M_F bending moment in uniform beam M_{p0} reference tip mass A_F section area of uniform beam I_{p0} reference rotary inertia of tip mass q_F section area of uniform beam I_p rotary inertia of tip mass q_F uniform beam mode-shape (trial function) α submergence ratio ϕ uniform pure bending slope mode-shape (trial γ tip mass ratio ψ uniform pure bending slope mode-shape (trial γ tip mass ratio ψ uniform pure bending slope mode-shape (trial γ density of steel n n ρ_w density of water W potential energy V shear force in non-uniform beam T A_r section area of non-uniform beam T A_r section al real and moment of non-uniform beam T A_r section al real and moment of non-uniform beam T A_r section al real and noment of n	θ	pure bending slope of non-uniform beam	v	Poisson's ratio
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a	principle coordinate of non-uniform beam	u_F	transverse deflection of uniform beam
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ч 0)	natural frequency of non-uniform beam	θ_{F}	pure bending slope of uniform beam
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 ∭⊳	real part of ω	q_F	principle coordinate of uniform beam
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\omega_{\rm K}$	imaginary part of ω	ω_F	natural frequency of uniform beam
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L	length of the beam without tip-mass	$\omega_{F,R}$	real part of ω_F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D_{h}	diameter of the base of the tower	ω_{FJ}	imaginary part of ω_F
m_{p0} reference tip mass V_F shear force in uniform beam l_{p0} reference rotary inertia of tip mass A_F section area of uniform beam m_p tip mass I_F sectional area 2nd moment of uniform beam l_p rotary inertia of tip mass g gravitational acceleration e_p eccentricity of tip mass φ uniform beam mode-shape (trial function) α submergence ratio ϕ non-uniform modeshape β tapering ratio ψ uniform pure bending slope mode-shape (trial function) ζ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape ρ density of steelnno. of trial functions considered ρ_w density of steelnno. of trial functions considered ρ_w density of steelnno. of trial energy K shear force in non-uniform beam R Rayleigh dissipation factor A section area of non-uniform beam M mass matrix I section area of non-uniform beam K stiffness matrix I sectional area fond moment of non-uniform beam K stiffness matrix I_{r0} reference translational spring constant L_e length of the beam element k_r translational spring constant of non-uniform beam T^e kinetic energy of beam element k_r translational spring stiffness ratio R^e Rayleigh dissipation factor of beam element k_r translational spring stiffness ratio<	D_n^{ν}	diameter of the upper uniform part of the tower	M_F	bending moment in uniform beam
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_{n0}	reference tip mass	V_F	shear force in uniform beam
m_p tip mass I_r sectional area 2nd moment of uniform beam l_p rotary inertia of tip mass g gravitational acceleration e_p eccentricity of tip mass φ uniform beam mode-shape (trial function) α submergence ratio ϕ non-uniform mode-shape β tapering ratio ψ uniform pure bending slope mode-shape (trial γ tip mass ratio ψ non-uniform pure bending slope mode-shape (trial γ tip mass ratio ψ non-uniform pure bending slope mode-shape (trial ρ density of steel n no. of trial functions considered ρ_w density of water U potential energy M bending moment in non-uniform beam R Ralyeigh dissipation factor A section area of non-uniform beam R mass matrix I sectional area 2nd moment of non-uniform beam C damping matrix L_r reference translational spring constant L_e length of the beam element k_r rotarional spring constant L_e length of the beam element k_r rotarional spring stiffness ratio R^e Ralyleigh dissipation factor of beam element k_r foundation spring stiffness ratio as used by Wu and (Chen (2010) R^e Ralyleigh dissipation factor of beam element r_r translational damping constant of non-uniform beam R^e Ralyleigh dissipation factor of beam element κ_r rotarion spring stiffness ratio as used by Wu and (Cre R^e Ralylei	I_{p0}	reference rotary inertia of tip mass	A_F	section area of uniform beam
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m_p	tip mass	I_F	sectional area 2nd moment of uniform beam
	Ip ^r	rotary inertia of tip mass	g	gravitational acceleration
α submergence ratio ϕ non-uniform modeshape β tapering ratio ψ uniform pure bending slope mode-shape (trial function) γ tip mass ratio ψ uniform pure bending slope mode-shape (trial function) ζ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape ρ density of steel n no. of trial functions considered ρ_w density of water U potential energy M bending moment in non-uniform beam T kinetic energy V shear force in non-uniform beam M mass matrix I section area of non-uniform beam M mass matrix I sectional area 2nd moment of non-uniform beam C damping matrix C_A added mass coefficient K stiffness matrix k_{r0} reference translational spring constant L_e length of the beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element k_r rotational spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and $Chen (2010)$ R^e Kaleid dissipation factor of beam element κ' rotational damping constant of non-uniform beam R^e Rayleigh dissipation factor of beam element κ_r rotational damping constant of non-uniform beam R^e	e_p	eccentricity of tip mass	φ	uniform beam mode-shape (trial function)
β tapering ratio ψ uniform pure bending slope mode-shape (trial function) γ tip mass ratio ψ non-uniform pure bending slope mode-shape ρ density of steel n no. of trial functions considered ρ_w density of water U potential energy M bending moment in non-uniform beam T kinetic energy V shear force in non-uniform beam R Rayleigh dissipation factor A section area of non-uniform beam M mass matrix I sectional area 2nd moment of non-uniform beam C damping matrix C_A added mass coefficient K stiffness matrix k_{t0} reference translational spring constant ξ local space coordinate k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ foundation spring stiffness ratio as used by Wu and (Chen (2010) N_e work done due to gravity on beam element c_r rotational damping constant of non-uniform beam N_e total number of beam elements	à	submergence ratio	ϕ	non-uniform modeshape
γ tip mass ratiofunction) ζ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape ρ density of steel n no. of trial functions considered ρ_w density of water U potential energy M bending moment in non-uniform beam T kinetic energy V shear force in non-uniform beam R Rayleigh dissipation factor A section area of non-uniform beam C damping matrix I section area 2nd moment of non-uniform beam C damping matrix I sectional area 2nd moment of non-uniform beam C damping matrix k_{r0} reference translational spring constant ξ local space coordinate k_r rraditional spring constant L_e length of the beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element k_r rotational spring stiffness ratio R^e Rayleigh dissipation factor of beam element k_r functional spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element κ foundation spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element c_r translational damping constant of non-uniform beam N_e total number of beam elements	β	tapering ratio	Ψ	uniform pure bending slope mode-shape (trial
ζ rotary inertia ratio of tip mass ψ non-uniform pure bending slope mode-shape ρ density of steelnno. of trial functions considered ρ_w density of waterUpotential energy M bending moment in non-uniform beamTkinetic energy V shear force in non-uniform beamRRayleigh dissipation factor A section area of non-uniform beamMmass matrix l sectional area 2nd moment of non-uniform beamCdamping matrix c_A added mass coefficientKstiffness matrix k_{r0} reference translational spring constant ξ local space coordinate k_r translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam U^e potential energy of beam element k_r translational spring constant of non-uniform beam V^e work done due to gravity on beam element κ' foundation spring stiffness ratio as used by Wu and Chen (2010) N_e Weg work done due to gravity on beam element c_r translational damping constant of non-uniform beam N_e total number of beam elements	γ	tip mass ratio		function)
ρ density of steelnno. of trial functions considered ρ_w density of waterUpotential energy M bending moment in non-uniform beam T kinetic energy V shear force in non-uniform beam R Rayleigh dissipation factor A section area of non-uniform beam M mass matrix I sectional area 2nd moment of non-uniform beam C damping matrix C_A added mass coefficient K stiffness matrix k_{r0} reference translational spring constant L_e length of the beam element k_r translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam U^e potential energy of beam element k_r translational spring constant of non-uniform beam U^e potential energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and $Chen (2010)$ W_g^e work done due to gravity on beam element c_r translational damping constant of non-uniform beam N_e total number of beam elements	ζ	rotary inertia ratio of tip mass	Ψ	non-uniform pure bending slope mode-shape
ρ_w density of water U potential energy M bending moment in non-uniform beam T kinetic energy V shear force in non-uniform beam R Rayleigh dissipation factor A section area of non-uniform beam M mass matrix I sectional area 2nd moment of non-uniform beam C damping matrix C_A added mass coefficient K stiffness matrix k_{t0} reference translational spring constant ξ local space coordinate k_r reference rotational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring sconstant of non-uniform beam V^e work done due to gravity on beam element κ' foundation spring stiffness ratio as used by Wu and $Chen (2010)$ W^e_g work done due to gravity on beam element c_r rotational damping constant of non-uniform beam N_e total number of beam elements	ρ	density of steel	п	no. of trial functions considered
M bending moment in non-uniform beam T kinetic energy V shear force in non-uniform beam R Rayleigh dissipation factor A section area of non-uniform beam M mass matrix I sectional area 2nd moment of non-uniform beam C damping matrix C_A added mass coefficient K stiffness matrix k_{t0} reference translational spring constant ξ local space coordinate k_{r0} reference rotational spring constant L_e length of the beam element k_r translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ' foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and Chen (2010) W_g^e work done due to gravity on beam element c_r translational damping constant of non-uniform beam N_e total number of beam elements	ρ_w	density of water	U	potential energy
Vshear force in non-uniform beamRRayleigh dissipation factorAsection area of non-uniform beamMmass matrixIsectional area 2nd moment of non-uniform beamCdamping matrixC_Aadded mass coefficientKstiffness matrixk_{t0}reference translational spring constant ξ local space coordinatek_roreference rotational spring constant L_e length of the beam elementk_rtranslational spring constant of non-uniform beam U^e potential energy of beam elementk_rrotational spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and Chen (2010) N_e Weg mork done due to gravity on beam element c_r rotational damping constant of non-uniform beam N_e total number of beam element	М	bending moment in non-uniform beam	Т	kinetic energy
Asection area of non-uniform beamMmass matrixIsectional area 2nd moment of non-uniform beamCdamping matrix C_A added mass coefficientKstiffness matrix k_{t0} reference translational spring constant ξ local space coordinate k_{r0} reference rotational spring constant L_e length of the beam element k_r translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ' Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element κ' translational damping constant of non-uniform beam N_e total number of beam element κ' rotational damping constant of non-uniform beam N_e total number of beam element	V	shear force in non-uniform beam	R	Rayleigh dissipation factor
Isectional area 2nd moment of non-uniform beamCdamping matrix C_A added mass coefficientKstiffness matrix k_{t0} reference translational spring constant ξ local space coordinate k_{r0} reference rotational spring constant L_e length of the beam element k_r translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ' Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element κ' translational damping constant of non-uniform beam N_e total number of beam element κ' rotational damping constant of non-uniform beam N_e total number of beam element	Α	section area of non-uniform beam	Μ	mass matrix
C_A added mass coefficientKstiffness matrix k_{t0} reference translational spring constant ξ local space coordinate k_{r0} reference rotational spring constant L_e length of the beam element k_r translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and Chen (2010) N_e Wth element of the beam c_t translational damping constant of non-uniform beam N_e total number of beam element	Ι	sectional area 2nd moment of non-uniform beam	С	damping matrix
k_{t0} reference translational spring constant ξ local space coordinate k_{r0} reference rotational spring constant L_e length of the beam element k_t translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element κ' translational damping constant of non-uniform beam N_e total number of beam element c_t translational damping constant of non-uniform beam N_e total number of beam elements	C_A	added mass coefficient	K	stiffness matrix
k_{r0} reference rotational spring constant L_e length of the beam element k_t translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element κ' translational damping constant of non-uniform beam N_e total number of beam element c_t translational damping constant of non-uniform beam N_e total number of beam elements	k_{t0}	reference translational spring constant	ξ	local space coordinate
k_t translational spring constant of non-uniform beam U^e potential energy of beam element k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and W_g^e work done due to gravity on beam element κ' foundation spring stiffness ratio as used by Wu and W_g^e Nth element of the beam c_{tn} translational damping constant of non-uniform beam N_e total number of beam elements	k_{r0}	reference rotational spring constant	Le	length of the beam element
k_r rotational spring constant of non-uniform beam T^e kinetic energy of beam element κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and Chen (2010) W_g^e work done due to gravity on beam element c_t translational damping constant of non-uniform beam N_e total number of beam elements	k_t	translational spring constant of non-uniform beam	U ^e	potential energy of beam element
κ Foundation spring stiffness ratio R^e Rayleigh dissipation factor of beam element κ' foundation spring stiffness ratio as used by Wu and Chen (2010) W_g^e work done due to gravity on beam element c_t translational damping constant of non-uniform beam N_e total number of beam elements c_r rotational damping constant of non-uniform beam N_e total number of beam elements	k_r	rotational spring constant of non-uniform beam	T^{e}	kinetic energy of beam element
κ' foundation spring stiffness ratio as used by Wu and Chen (2010) W_e^r n_e work done due to gravity on beam element Nth element of the beam c_t translational damping constant of non-uniform beam N_e total number of beam elements c_r rotational damping constant of non-uniform beam N_e total number of beam elements	κ	Foundation spring stiffness ratio	R ^e	Rayleigh dissipation factor of beam element
Chen (2010) n_e Nth element of the beam c_t translational damping constant of non-uniform beam N_e total number of beam elements c_r rotational damping constant of non-uniform beam N_e total number of beam elements	κ'	foundation spring stiffness ratio as used by Wu and	W_g^e	work done due to gravity on beam element
c_t translational damping constant of non-uniform beam N_e total number of beam elements c_r rotational damping constant of non-uniform beam		Chen (2010)	n _e	Nth element of the beam
<i>c_r</i> rotational damping constant of non-uniform beam	Ct	translational damping constant of non-uniform beam	N_e	total number of beam elements
	Cr	rotational damping constant of non-uniform beam		

converges for much lower number of trial functions (e.g., 25) as compared to the number of elements (e.g., 400) in FEM. This makes the matrix size, in eigenvalue problem of RRM, much smaller leading to faster computation.

As we will see later, the number of trial functions needed for convergence of natural frequency is related to the non-uniformity in the beam. If the non-uniformity is more, more trial functions are needed. As mentioned earlier, the trial functions are assumed as uniform beam mode-shapes satisfying the same boundary condition as the ocean tower. Including the effect of rotary inertia and shear deformation in the uniform beam ensures that accurate higher order mode-shapes will be obtained. This is the main motivation behind using a Timoshenko beam over Euler–Bernoulli beam. In case of Euler–Bernoulli beam, the effect of rotary inertia and shear deformation is ignored due to which accurate solutions are limited to lower order mode-shapes only, hence, cannot be used as trial functions in RRM for the analysis of highly non-uniform beams. Beside this, using a Timoshenko beam allows the analysis of thick beams as well.

2. Problem formulation

A continuous, elastic model of an ocean tower is shown in Fig. 1. The tower is modeled as Timoshenko beam. The length of the tower

without the tip mass is *L*. It is immersed up to αL . The foundation of the tower is partially constrained against translation and rotation. Hence, it can be modeled as a combination of translational and rotational linear-springs, with spring constants k_t and k_p respectively. To account for damping effect due to loose silt at sea bed, translational and rotational linear-dampers, with damping constants c_t and c_p respectively are

Download English Version:

https://daneshyari.com/en/article/1725426

Download Persian Version:

https://daneshyari.com/article/1725426

Daneshyari.com