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ABSTRACT

Careful modelling of non-stationarity is critical to reliable specification of marine and coastal design criteria.
We present a spline based methodology to incorporate spatial, directional, temporal and other covariate
effects in extreme value models for environmental variables such as storm severity. For storm peak significant
wave height events, the approach uses quantile regression to estimate a suitable extremal threshold, a Poisson
process model for the rate of occurrence of threshold exceedances, and a generalised Pareto model for size of
threshold exceedances. Multidimensional covariate effects are incorporated at each stage using penalised
(tensor products of) B-splines to give smooth model parameter variation as a function of multiple covariates.
Optimal smoothing penalties are selected using cross-validation, and model uncertainty is quantified using a
bootstrap re-sampling procedure. The method is applied to estimate return values for large spatial
neighbourhoods of locations, incorporating spatial and directional effects. Extensions to joint modelling of
multivariate extremes, incorporating extremal spatial dependence (using max-stable processes) or more

general extremal dependence (using the conditional extremes approach) are outlined.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Availability of comprehensive met-ocean data allows the effect
of heterogeneity (or non-stationarity) of extremes with respect to
direction, season and location to be accommodated in estimation
of design criteria. Jonathan and Ewans (2013) review statistical
modelling of extremes for marine design.

Capturing covariate effects in extreme sea states is important
when developing design criteria. In previous work (e.g. Jonathan
and Ewans, 2007a; Ewans and Jonathan, 2008) it has been shown
that omnidirectional design criteria derived from a model that
adequately incorporates directional covariate effects can be mate-
rially different from a model which ignores those effects (e.g.
Jonathan et al., 2008). Directional return values derived from a
directional model can be heavier tailed than that derived from a
direction-independent approach, indicating that large values of
extreme events are more likely than we might anticipate were we
to base our beliefs on estimates which ignore directionality.
Similar effects have been demonstrated for seasonal covariates
(e.g. Anderson et al., 2001; Jonathan et al., 2008).

There is a large body of statistical literature regarding modelling
of covariate effects in extreme value analysis; for example, Davison
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and Smith (1990) or Robinson and Tawn (1997). The case for
adopting an extreme value model incorporating covariate effects
is clear, unless it can be demonstrated statistically that a model
ignoring covariate effects is no less appropriate. Chavez-Demoulin
and Davison (2005) and Coles (2001) provide straight-forward
descriptions of a non-homogeneous Poisson model in which
occurrence rates and extremal properties are modelled as functions
of covariates. Scotto and Guedes-Soares (2000) describe modelling
using non-linear thresholds. A Bayesian approach is adopted (Coles
and Powell, 1996) using data from multiple locations, and by Scotto
and Guedes-Soares (2007). Spatial models for extremes (Coles and
Casson, 1998; Casson and Coles, 1999) have also been used, as have
models (Coles and Tawn, 1996, 2005) for estimation of predictive
distributions, which incorporate uncertainties in model parameters.
Ledford and Tawn (1997) and Heffernan and Tawn (2004) discuss
the modelling of dependent joint extremes. Chavez-Demoulin and
Davison (2005) also describe the application of a block bootstrap
approach to estimate parameter uncertainty and the precision of
extreme quantile estimates, applicable when dependent data from
neighbouring locations are used. Jonathan and Ewans (2007b) use
block bootstrapping to evaluate uncertainties associated with
extremes in storm peak significant wave heights in the Gulf of
Mexico. Guedes-Soares and Scotto (2001) discuss the estimation of
quantile uncertainty. Eastoe (2007) and Eastoe and Tawn (2009)
illustrate an approach to removing covariate effects from a sample
of extremes prior to model estimation.
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One of the first examinations of spatial characteristics of
extreme wave heights was reported by Haring and Heideman
(1978) for the Gulf of Mexico. They performed extremal analysis of
the ODGP hurricane hindcast database (Ward et al., 1978) at a
number of continental shelf locations from Mexico to Florida, and
concluded that there was no practical difference between the sites,
but they did observe a gradual reduction in extreme wave heights
with decreasing water depth. Chouinard et al. (1997) took the
opportunity to re-examine the spatial behaviour of extremes in
the Gulf of Mexico, when the GUMSHOE hindcast database
became available. Jonathan and Ewans (2011b) used thin-plate
splines to model the spatial characteristics of events in the Gulf of
Mexico. Extending the thin-plate spline formulism to include
other (possibly periodic) covariates is difficult; instead, the sample
is typically pre-processed to remove the influence of all covariates
other than the (2-D) spatial, prior to model estimation using thin-
plate splines. Models estimated in this way suffer from the fact
that interactions between various modelling steps (and the para-
meters estimated therein) cannot be easily quantified.

Characterising the joint structure of extremes for different
environmental variables is also important for improved under-
standing of those environments. Yet many applications of multi-
variate extreme value analysis adopt models that assume a
particular form of extremal dependence between variables with-
out justification, or restrict attention to regions in which all
variables are extreme. The conditional extremes model of
Heffernan and Tawn (2004) provides one approach avoiding these
particular restrictions. Extremal dependence characteristics of
environmental variables also typically vary with covariates.
Reliable descriptions of extreme environments should also there-
fore characterise any non-stationarity. Jonathan et al. (2013)
extend the conditional extremes model of Heffernan and Tawn
to include covariate effects, using Fourier representations of model
parameters for single periodic covariates.

The last decade has seen the emergence of useable statistical
models for spatial extremes based on max-stable processes, at least in
academia. The application of max-stable processes is complicated due
to unavailability of the full multivariate density function. Padoan et al.
(2010) develop inferentially practical, likelihood-based methods for
fitting max-stable processes derived from a composite likelihood
approach. The procedure is sufficiently reliable and versatile to permit
the simultaneous modelling of marginal and dependence parameters
in the spatial context at a moderate computational cost. Davison and
Gholamrezaee (2012) describe an approach to flexible modelling for
maxima observed at sites in a spatial domain, based on fitting of max-
stable processes derived from underlying Gaussian random process
models. Generalised extreme value (GEV) margins as assumed
throughout the spatial domain, and models incorporate standard
geo-statistical correlation functions. Estimation and fitting are per-
formed through composite likelihood inference applied to observa-
tions from pairs of sites. Davison et al. (2012) also provide a good
introduction and review. Erhardt and Smith (2011) use approximate
Bayesian computation to circumvent the need for a joint likelihood
function by instead relying on simulations from the (unavailable)
likelihood avoiding the need to construct composite likelihoods at
higher computational cost.

In this work, we apply a marginal model for spatio-directional
extremes to a sample of data for storm severity on the north west
continental shelf of Western Australia. The model (developed in
Section 2) adopts a penalised B-spline formulation to characterise
smooth variation of extreme value parameters spatially and
directionally. The North West Shelf application is then presented
in Section 3. In Section 4, we discuss model extension to incorpo-
rate appropriate spatial extremal dependence, and also outline a
non-stationary extension of the conditional extremes model of
Heffernan and Tawn (2004).

2. Model

The objective is to estimate design criteria for individual
locations within a spatial neighbourhood, accounting for spatial
and storm directional variability of extremal characteristics.

2.1. Model components

Following the work of Jonathan and Ewans (2008, 2011b),
summarised in Jonathan and Ewans (2013), we model storm peak
significant wave height H®, namely the largest value of significant
wave height Hs observed at each location during the period of a
storm event. We assume that each of 15 independent storm peak
events is observed at all of n; locations within the neighbourhood
under consideration. We therefore start with a total of n =15 x n;
observations of H¥. We refer to these as the sample {z;}_; of n
storm peak significant wave heights observed at locations
{x,-,y,»}?:] with dominant wave directions {9,-};1:1 (corresponding
to the time of occurrence of H?, henceforth “storm directions”).
We then proceed using the peaks over threshold approach as
follows.

Extreme value threshold: We first estimate a threshold function
¢ above which observations z are assumed to be extreme.
The threshold varies smoothly as a function of covariates
((f)éqﬁ(e,x,y)) and is estimated using quantile regression. As a
result of thresholding, the same number of observations of smaller
storm peak events is eliminated from all locations by construction.
The number of storms peak events remaining per location reduces
from ns to ns, so that the total number of observations (of
threshold exceedances) for extreme value modelling is
n =ng x n;. We refer to these as the set of n threshold exceedances
{zi}!_, observed at locations {x;,y;}{_ ; with storm peak directions
{0 1.

Rate of threshold exceedance: We next estimate the rate of
occurrence p of threshold exceedance using a Poisson process
model with Poisson rate p(ép(ﬁ, X,¥)).

Size of threshold exceedance: We estimate the size of occurrence
of threshold exceedance using a generalised Pareto (henceforth
GP) model. The GP shape and scale parameters £ and ¢ are also
assumed to vary smoothly as functions of covariates.

This approach to extreme value modelling follows that of
Chavez-Demoulin and Davison (2005) and is equivalent to direct
estimation of a non-homogeneous Poisson point process model
(e.g., Dixon et al., 1998; Jonathan and Ewans, 2013).

2.2. Parameter estimation

Extreme value threshold: For quantile regression, we seek a
smooth function ¢ of covariates corresponding to non-exceedance
probability 7 of H¥ given any combination of ,x,y. We choose
to estimate ¢b by minimising the quantile regression lack of fit
criterion

n n
Cp= {T‘ 2 Iil+d-7 % ri|}
irp=0 irj <0
for residuals r; = z; — (6;, x;,y;; 7). We regulate the smoothness of
the quantile function by penalising lack of fit for parameter
roughness Ry (with respect to all covariates), by minimising the
revised penalised criterion

fz=f¢+/1¢R¢

where the value of roughness coefficient 4, is selected using cross-
validation to provide good predictive performance.

Rate of threshold exceedance: For Poisson modelling, we
use penalised likelihood estimation. The rate p of threshold
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