
Efficient reduction and modularization for large fault trees stored
by pages

Shanqi Chen a,b, Jin Wang a, Jiaqun Wang a, Fang Wang a,⇑, Liqin Hu a,b

aKey Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
bUniversity of Science and Technology of China, Hefei, Anhui 230031, China

a r t i c l e i n f o

Article history:
Received 16 July 2015
Received in revised form 18 September 2015
Accepted 3 November 2015
Available online 17 December 2015

Keywords:
Fault tree
Simplification
Modularization
Probabilistic Risk Assessment

a b s t r a c t

Fault Tree Analysis (FTA), an indispensable tool used in Probabilistic Risk Assessment (PRA), has been
used throughout the commercial nuclear power industry for safety and reliability analyses. However,
large fault tree analysis, such as those used in nuclear power plant requires significant computer
resources, which makes the analysis of PRA model inefficient and time consuming. This paper describes
a fault tree pre-processing method used in the reliability and probabilistic safety assessment program
RiskA that is capable of generating minimal cutsets for fault trees containing more than 10,000 gates
and basic events. The novel feature of this method is not only that Boolean reduction rules are used
but also that a new objective of simplification is proposed. Moreover, since the method aims to find more
fault tree modules by the linear-time algorithm, it can optimize fault tree modularization, which further
reduces the computational time of large fault tree analysis.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fault Tree Analysis (FTA), an indispensable tool in Probabilistic
Risk Assessment (PRA), has been used throughout the commercial
nuclear power industry for safety and reliability analyses. How-
ever, large fault tree analysis for nuclear power applications
require significant computer resources, which makes the analysis
of PRA model inefficient and time consuming. Fault tree pre-
processing mainly includes fault tree simplification and fault tree
modularization, which are performed before qualitative and quan-
titative fault tree analysis. Pre-processing significantly influences
the calculation speed and is also important in the overall process
of fault tree analysis.

The primary purpose of fault tree simplification is to simplify
the fault tree structure by pruning the redundant nodes or sub-
trees. Simplification reduces the size of large fault tree, which
reduces the calculation complexity. The earliest algorithm
(Bengiamin et al., 1976) proposed to simplify the fault tree, which
eliminates repeated events inputted to OR gates, was very simple.
The algorithm based on Program Package for Evaluation of Fault
Trees (FAUNET) rules (Platz and Olsen, 1976) was one of the widely
used traditional simplification approaches. Its’ process used several
Boolean reduction rules to reduce the fault tree size without

changing the logic structure. Additional rules, such as elimination
(Sun and Andrews, 2004) were added by later scholars. A new fault
tree reduction methodology in Integrated Reliability and Risk
Analysis System (IRRAS) algorithms (Russell and Rasmuson, 1993)
was proposed by using some bottom-up techniques, which took
advantage of several optimization methods to restructure and prune
the fault tree including independent sub-trees, probability pruning,
and coalescing of gates. Fault tree optimization algorithms used in
the Finnish Centre for Radiation and Nuclear Safety (STUK) PSA
(SPSA) code (Niemela, 1994) did not use any Boolean reduction rule,
since the fault tree itself contains simplification rules.

Modularization (Chatterjee, 1975) of fault trees is performed on
the simplified fault tree structure. It further reduces the computing
complexity significantly by dividing a large fault tree into small
pieces which can be translated into cutsets independently. Many
improvements of modularization were performed (Wilson, 1985;
Camarinopoulos and Yllera, 1986; Kohda et al., 1989). After a
linear-time algorithm to find fault tree modules was developed
by Dutuit and Rauzy (1996), modularizing the fault tree itself
requires little processing time in comparison with the tree process-
ing time. However, different structures of the same fault tree
would result in different accounts of modules. Use of this method-
ology will results in modules that are either too large or too small;
therefore, it is difficult to obtain appropriate sizes of modules.

All of the simplification methods discussed above do not
consider the effect of fault tree structure with respect to

http://dx.doi.org/10.1016/j.anucene.2015.11.002
0306-4549/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: fang.wang@fds.org.cn (F. Wang).

Annals of Nuclear Energy 90 (2016) 22–25

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2015.11.002&domain=pdf
http://dx.doi.org/10.1016/j.anucene.2015.11.002
mailto:fang.wang@fds.org.cn
http://dx.doi.org/10.1016/j.anucene.2015.11.002
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene


modularization. A simplification algorithm, based upon process of
paging stored fault trees and a heuristic decision of when to recon-
struct fault tree pages in order to obtain more modules, is presented
by this paper. The novel feature of the proposed algorithm is not
only that Boolean reduction rules were used but also that a new
objective of simplification was proposed. The objective is aimed
on obtaining more modules. Therefore, this pre-processing algo-
rithm can help both the fault tree simplification and the modular-
ization, which significantly reduces the computation time.

2. Methodology

2.1. A brief review of Boolean rules

A brief review of Boolean rules is presented here, which usually
consist of four rules.

(1) Contraction: subsequent gates of the same type are con-
tracted to form a single gate. This reconstructs the fault tree
as an alternating sequence of AND gates and OR gates.

(2) Extraction: the purpose is to identify the common factor.
(3) Factorization: pairs of events that always occur together

under the same type of gates are identified and combined
to form a single complex event.

(4) Elimination: using the Boolean law of absorption, like:
a + (a * b) = a, a * (a + b) = a.

The application of the above rules is to simplify a fault tree to its
minimal form; that is, the fault tree cannot be simplified further by
using the above simplification rules. However, it does not work
very well with the fault tree structure stored in pages.

2.2. Paging storage

Fault tree structure can be imported from the code database or
models in other codes, like the FTP format model used by CAFTA
(Jim et al., 1986), RSA format model used by RiskSpectrum (Berg,
1990), and XML format model used by XFTA (Rauzy, 2012). When
the fault tree model is very large similar to those developed for
nuclear power plant, it requires large amount computer resources
(RAM) and computation time, so it is difficult to be imported and
stored directly.

In order to optimize use of computer memory and to improve
the importing speed, fault trees are stored by pages which are con-
nected by transfer gates. This results in the same fault tree struc-
ture existing in more than one place which can be stored
independently as a single page. This single page is linked by a
transfer gate which replaces the position of the top gate of the

structure. For example, Fig. 1 shows a fault tree that is not stored
by pages, and Fig. 2 depicts the fault tree as two pages which are
connected by a TRANSFER gate T_G2.

2.3. Pre-processing method

After importing the fault tree structure, simplification will be
performed in order to reduce the fault tree to its most concise form
without changing its logic functions.

In order to simplify the paging stored fault trees to its minimal
form, a heuristic fault tree reduction method is proposed here. In
this method, three supplements are provided in order to make
the reviewed Boolean rules of simplification more suitable for pag-
ing stored fault trees.

(1) TRANSFER gate is treated as the same type of basic event
while implementing those rules.

(2) Simplify every page from bottom to top to its minimal form
first, and the last page that is the whole fault tree is simpli-
fied last.

(3) A new rule is added after those four rules, and iterations of
these five rules will continue until the fault tree structure
converges. This important rule is to rename each gate
according to the sub-tree structure where its top event is
this gate, then to restore the whole fault tree as pages
according to the rules mentioned above. That is, all of the
sub-trees with a same certain structure will be represented
by a TRANSFER gate with a unique name according to its
structure characteristics. And this TRANSFER gate will be
connected to a single sub-tree page which stores the certain
fault tree structure.

Figs. 3 and 4 are examples which show the importance of the
three supplements. The fault tree page linked by TRANSFER gate
A can be simplified to its minimal form by supplement two, and
TRANSFER gate A can be looked as a basic event based on supple-
ment one, then G4 will disappear by the elimination rule. After all
rules of simplification, both G3 and G5 have the same structure
representing (A + B) which is stored as a page after renaming them
as the same gate from supplement three.

A fault tree module is a sub-tree which is completely indepen-
dent of the rest of the tree, which means one event cannot appear
both inside and outside of the module. In the practice of the large
fault tree analysis for many nuclear power plants, it is found that
the simplification had a substantial effect on the modularization
which significantly influences the computational speed of the large
fault tree analysis. Therefore, a heuristic reconstruction method is
proposed here in order to obtain more modules. In this method,
pages will be broken down in the modularization process of the
fault tree simplified based on paging stored structures.

Consider the fault tree shown in Fig. 5 for example, which has
three pages. According to the simplification rules described above,

Fig. 1. Fault tree structure without paging storage. Fig. 2. Fault tree structure with paging storage.

S. Chen et al. / Annals of Nuclear Energy 90 (2016) 22–25 23



Download English Version:

https://daneshyari.com/en/article/1727906

Download Persian Version:

https://daneshyari.com/article/1727906

Daneshyari.com

https://daneshyari.com/en/article/1727906
https://daneshyari.com/article/1727906
https://daneshyari.com

