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a b s t r a c t

We propose an approach to solve the stochastic neutron point kinetics equations using an adaptation of
the diagonalization-decomposition method (DDM). This new approach (Double-DDM) yields a nonstiff
solution for the stochastic formulation, allowing the calculation of the neutron and precursor densities
at any time of interest without the need of using progressive time steps. We use Double-DDM to compute
results for stochastic problems with constant, linear, and sinusoidal reactivities. We show that these
results strongly agree with those obtained by other approaches established in the literature. We also
compute and analyze the first four statistical moments of the solutions.

� 2016 Published by Elsevier Ltd.

1. Introduction

The neutron point kinetics equations (Hetrick, 1971; Kinard and
Allen, 2004; Hayes and Allen, 2005) are the coupled differential
equations for the neutron density and for the delayed neutron pre-
cursor concentrations. These equations model the time-dependent
behavior of a nuclear reactor and provide insight into the dynamics
of its operation. The time-dependent parameters in this system are
the reactivity function and the neutron source term.

The neutron density and delayed neutron precursor
concentrations vary randomly with time; however, the point
kinetics equationsaredeterministic andcanonlybeused toestimate
average values. Random fluctuations in the neutron density and
precursor concentrations can be significant at low power levels
(Hurwitz et al., 1963), which points to the importance of estimating
these variations.

Hayes and Allen (2005) have generalized the standard
deterministic point kinetics equations, deriving a system of
stochastic differential equations that model the random behavior
of the neutron density and the precursor concentrations in a point
reactor. Due to the issue of stiffness, this system was implemented
numerically using a stochastic piecewise constant approximation
method (Stochastic PCA). Work performed by Saha Ray (2012)
has shown that order 1.5 strong Taylor and Euler–Maruyama

numerical methods are valid computational alternatives to
Stochastic PCA in solving the stochastic point kinetics equations.
However, with the exception of cases modeled with either none
or only one group of neutron precursors, the stiffness of the
problem remains.

In this paper we propose to solve this stochastic formulation
using a double decomposition approach based on the
diagonalization-decomposition method (DDM) decribed by
Wollmann da Silva et al. (2014). This proposed method is the major
novelty and principal contribution of this work, yielding a nonstiff
solution for the stochastic point kinetics equations. Specifically, this
approach allows the calculation of the neutron and precursor
densities at any time of interest without the need of using
progressive time steps. This solution is obtained with a minimal
amount of numerical approximations of the model; the largest
numerical effort lies in the truncation of the decomposition and
the integrations required by DDM.

The major caveat in this approach is that convergence of DDM is
yet to be proven. For this reason, a Lyapunov criterion (Boichenko
et al., 2005) is used to guarantee convergence (cf. Petersen et al.,
2011; Wollmann da Silva et al., 2014). We present computational
results for problems with constant, linear, and sinusoidal reactivi-
ties. The results of the proposed method are compared against
those of other approaches established in the literature, showing
strong agreement. We also compute the first four statistical
moments of the solutions.

This work is an expanded version of a recent conference paper
(Wollmann da Silva et al., 2015). The remainder of this paper is
organized as follows. In Section 2 we present a brief review on
the key aspects of DDM. In Section 3 we formulate the stochastic
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point kinetics equations. We introduce the proposed double
decomposition approach in Section 4. Numerical results are given
in Section 5 for problems with constant (Section 5.1) and
time-dependent (Section 5.2) reactivities. The paper concludes in
Section 6 with a discussion of the work presented.

2. The diagonalization-decomposition method (DDM)

Following the work performed by Wollmann da Silva et al.
(2014), one can obtain an analytical representation for the solution
of the neutron point kinetics equations that is free of stiffness. The
neutron point kinetics equations with six groups of precursors and
time-dependent reactivity qðtÞ are written as:

d
dt

nðtÞ ¼ qðtÞ � b
K

nðtÞ þ
X6
i¼1

kiCiðtÞ; nð0Þ ¼ n0; ð2:1aÞ

d
dt

CiðtÞ ¼ bi

K
nðtÞ � kiCiðtÞ; Cið0Þ ¼ bin0

Kki
; ð2:1bÞ

for i ¼ 1; 2; . . . ; 6: Here, nðtÞ is the neutron density; CiðtÞ is the
density of the ith delayed neutron precursor group; ki is the decay
constant for a specific group i; K represents the neutron mean
generation time; and bi represents the delayed-neutron fraction in
a specific group i. The total fraction of delayed neutrons is given

by b ¼P6
i¼1bi:

A recursive scheme with finite recursive depth R is used to
obtain a solution. The truncation index is determined with
exponential convergence by the Lyapunov criterion (Boichenko
et al., 2005; Petersen et al., 2011), evaluated after each recursion
step. The neutron population and the precursors concentrations
are written in terms of the solution from a recursion initialization
ð j ¼ 0Þ and the respective correction terms ð j > 0Þ for an
appropriate R 2 N :

nðtÞ ¼
XR
j¼0

njðtÞ; ð2:2aÞ

CiðtÞ ¼
XR
j¼0

Ci;jðtÞ: ð2:2bÞ

The combination of Eqs. (2.1) and (2.2) yields a system with
7� R unknowns. We define

YðtÞ ¼
XR
j¼1

Y jðtÞ; ð2:3aÞ

Y jðtÞ ¼ ½njðtÞ;C1;jðtÞ;C2;jðtÞ; C3;jðtÞ; C4;jðtÞ;C5;jðtÞ;C6;jðtÞ�T ; ð2:3bÞ

X ¼ diag
q0 � b

K
;�k1;�k2;�k3;�k4;�k5;�k6

� �
; ð2:3cÞ

and

N ¼

q1ðtÞ
K k1 k2 . . . k6
b1
K 0 0 . . . 0
b2
K 0 0 . . . 0

..

. ..
. . .

. . .
. ..

.

b6
K 0 . . . 0 0

2666666664

3777777775
; ð2:3dÞ

where the constant q0 and q1ðtÞ are such that qðtÞ ¼ q0 þ q1ðtÞ:
Given the recursive system

d
dt

Y0ðtÞ �XY0ðtÞ ¼ 0; ð2:4aÞ
d
dt

Y jðtÞ �XY jðtÞ ¼ NðtÞY j�1ðtÞ; j > 0 ; ð2:4bÞ

the solution of Eq. (2.4a) is

Y0ðtÞ ¼ expðXtÞY0ð0Þ; ð2:5aÞ
with Y0ð0Þ ¼ ½n0;C1ð0Þ; C2ð0Þ; . . . ; C6ð0Þ�T : Equation (2.4b) may be
formally solved by the Laplace transform:

ð2:5bÞ
since the initial condition from Eqs. (2.1) is fully absorbed in
Eq. (2.5a). The integral in Eq. (2.5b) is evaluated using the
Gauss–Legendre method.

A flowchart describing the implementation of this method is
given in Fig. 1. The solution is obtained in an analytical representa-
tion that may be evaluated for any time value (free of stiffness).

3. The stochastic formulation

Hayes and Allen (2005) derived a system of Itô stochastic
differential equations that model the dynamics of the neutron
density and the delayed neutron precursors in a nuclear reactor.
This formulation describes the variation of the population and
can be interpreted as a balance between deaths, births, and
transformations of neutrons in the system. The probabilities of
these events are determined by the physical parameters of the
model, such as the total and partial delayed neutron fractions;
the fraction of delayed neutrons of each precursor group; the decay
constant of each group; and the average number of neutrons
produced in each fission.

Assuming a time interval small enough such that only one event
occurs, one can write

d
dt

YðtÞ ¼ bAðtÞYðtÞ þ QðtÞ þ bB1
2ðtÞ d

dt
WðtÞ; ð3:1aÞ

Fig. 1. DDM approach to solve the deterministic problem.
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