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a b s t r a c t

Optimizing the turbine layout in a wind farm is crucial to minimize wake interactions between turbines,
which can lead to a significant reduction in power generation. This work is motivated by the need to
develop wake interaction models that can accurately capture the wake losses in an array of wind tur-
bines, while remaining computationally tractable for layout optimization studies. Among existing wake
interaction models, the SS (sum of squares) model has been reported to be the most accurate. However,
the SS model is unsuitable for wind farm layout optimization using mathematical programming
methods, as it leads to non-linear objective functions. Hence, previous work has relied on approximated
power calculations for optimization studies. In this work, we propose a mechanistic linear model for
wake interactions based on energy balance, with coefficients determined based on publicly available data
from the Horns Rev wind farm. A series of numerical experiments was conducted to assess the perfor-
mance of the wake interaction model. Results show that the proposed model is compatible with standard
mathematical programming methods, and resulted in turbine layouts with higher energy production
than those found using previous work.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wind energy is one of the fastest growing sustainable sources of
electricity, experiencing exponential growth in recent years [1].
Wind turbines extract kinetic energy from the wind through in-
teractions between the turbine blades and the wind. The aero-
dynamic forces produced by the wind turns the rotor to generate
electricity. The air behind the turbine is slowed down with its
turbulence intensity increased [2]. This region of decelerated air is
called the wake [2]. The wake expands as it travels downstream,
mixing with surrounding air and increasing its velocity back to
undisturbed conditions after some distance. This distance is crucial
as the performance of turbines downstream is dependent on the
incoming wind conditions. If turbines are too close to each other,
the wind cannot recover to its upstream state [3], causing losses in
energy generation for turbines downstream [4e6]. These wake

losses can reduce the annual energy production by as much as
10%e20% [4]. Therefore, an understanding of turbine wakes is
crucial for optimal wind farm planning [3].

Determining the optimal layout of a set of wind turbines in a
given area is a complex problem.Wind farm layout problems can be
modelled in two ways, namely (1) continuous and (2) discrete. In
discrete models, the turbines can only be placed in a countable set
of pre-determined locations inside the wind farm, while in
continuous models they can be placed anywhere in the farm,
considering their coordinates as continuous variables. Meta-
heuristic algorithms such as evolutionary algorithms [7e11], par-
ticle swam optimization [12,13], and extended pattern search [14],
have been the primary tools to solve continuous models. Although
powerful in tackling non-linear problems, metaheuristics cannot
guarantee global optimality.

There are a number of publications on discrete modelling of
wind turbine placement in wind farms [15e18]. An example is
the work by Mosetti et al. [15], where the wind farm is divided
into 10 by 10 square cells and each turbine is placed in the centre
of each cell. The cell sizes are chosen to enforce distance con-
straints between turbines, e.g., turbines cannot be placed closer
than five turbine diameters apart. Although layout solutions to

Abbreviations: LSVD, linear superposition of velocity deficits; LS, linear super-
position; SED, sum of energy deficits; SS, sum of squares; SKED, sum of kinetic
energy deficits; GS, geometric superposition.
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discrete models may be of lower spatial resolution than of
continuous models, discrete models can be solved using powerful
mathematical programming approaches [19e21], which can
guarantee optimality of the solutions for linear and quadratic
functions and constraints. In a well-designed discrete model,
knowing the optimality of solutions can save tremendous
amount of time in the optimization process.

A MIP (mixed integer programming) problem consists of an
objective function and a mix of integer and continuous con-
straints. The layout optimization problem can be modelled in
this mathematical programming approach by discretizing the
wind farm domain into possible turbine placement locations,
with binary decision variables denoting if a turbine is placed at
a specific location or not. These problems can be solved using
algorithms such as branch and bound [22]. Fagerfj€all [23],
Donovan et al. [19], Zhang et al. [20], and Turner et al. [21] have
studied the application of branch and bound methods in wind
farm layout optimization. Applying mathematical programming
methods to solve the layout problem is promising due to the
optimality of the solutions can be known, as opposed to meta-
heuristics that provide no guarantee of convergence. Further-
more, solver efficiency can be improved through alternative
problem formulations and problem-specific branching strategies
[20]. The objective of this paper is to introduce a novel wake
interaction model that leads to linear MIP formulations, thus
guaranteeing the optimality of solutions to WFLO (wind farm
layout optimization) problems.

2. Wake modelling

2.1. Single wake model

The Jensen model [24] is one of the most widely used wake
models. It assumes a linearly expanding wake and uniform velocity
profile inside the wake. As a result of momentum conservation, the
decelerated wind behind the rotor recovers to free stream speed
after travelling a certain distance downstream of the turbine [24].
The velocity downstream from the rotor is given by

uðxÞ ¼ U∞
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where CT is the thrust coefficient of the turbine, D is the turbine
rotor diameter, U∞ is the wind speed in the free stream, and k is the
Wake Decay Constant, which is generally taken to be 0.075 for
onshore farms and 0.04 to 0.05 for offshore farms.

The power production of each turbine i is based on the incoming
wind speed that it experiences,
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1
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where A as the rotor area, r is the density of the air, hgen is the
generator efficiency, and CP is the rotor power coefficient. The AEP
(annual energy production) of a wind farm is defined as the inte-
gration of power production (kW) over time (hr),

AEP ¼ 8766
XN
i¼1

X
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where pd is the probability of wind state d, defined as a (speed,
direction) pair, L is the set of wind states with non-zero probability
for the specific wind farm site, N is the total number of turbines,
and 8766 is the effective number of hours in a year.

2.2. Wake interaction models

The interaction of multiple superimposed turbine wakes is not
fully understood, as it involves complex turbulence phenomena
[25]. A number of descriptions exist in the literature to determine
the wind speed due to the presence of multiple turbine wakes
upstream. In particular, four descriptions available in the literature
[2], listed in Table 1, will be introduced in this section. In these
equations, ui is the wind speed at turbine i, uij is the wind speed at
turbine i due to (the wake of) turbine j and the summations and the
products are taken over the n turbines upstream of turbine i
[2,26,27].

The GS (Geometric Superposition) assumes the ratio of the wind
speed at a location relative to the free stream speed is a product of
velocity ratios caused by upstream turbines. The LSVD (linear su-
perposition of velocity deficits) considers that the velocity deficit at
a given turbine is equal to the sum of the velocity deficits caused by
all turbines upstream from it. The SED (Sum of Energy Deficits)
assumes the kinetic energy deficit in the wakes is additive. The SS
(Sum of Squares) sums up the squares of the velocity deficits of the
upstream wakes.

Two main issues exist that hinder the use of these wake inter-
action models. Firstly, with the exception of SED, the physical basis
of these descriptions is unclear, which makes improvement
through experimental data difficult. Secondly, using all of the
mentioned wake interaction models in deterministic optimization
methods remains a challenge, for several reasons. If the objective
function of the WFLO problem is to maximize power or energy
production, all of the above wake interaction models (except SED)
would lead to non-linear objective functions and linear approxi-
mations will be required to improve solvability. In addition, all of
the models mentioned are recursive functions. Specifically, the
term uj, i.e. the incoming wind speed that a turbine j experiences, is
dependent on the conditions upstream, which are unknown a
priori, thus precluding the use of well-established mathematical
programming methods for its solution [19e21].

In the literature, comparisons of the different wake interaction
models with experimental measurements have demonstrated that
the sum of squares model, despite lacking physical meaning, is the
most accurate [2]. However, as mentioned previously, it is difficult
to implement sum of squares into a MIP formulation. In this work, a
wake interaction model based on the principle of energy balance is
presented as a physics-based, linear alternative to the sum of
squares model, leading to linear objective functions.

3. Proposed wake model

3.1. Energy balance

In the proposed wake interaction model, energy balance is used
to describe thewind speed recovery in the far wake, where the flow
is fully developed [3]. The speed recovery in the wake is due to

Table 1
Wake interaction models.

Name Formula
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