Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Benchmarking airports based on a sustainability ranking index

Şan Kılkış ^a, Şiir Kılkış ^{b, *}

^a Faculty of Aerospace Engineering, Delft University of Technology (TU Delft), The Netherlands
^b The Scientific and Technological Research Council of Turkey, Ankara, Turkey

A R T I C L E I N F O

Article history: Received 30 March 2015 Received in revised form 3 August 2015 Accepted 11 September 2015 Available online 25 September 2015

Keywords: Airports Energy Water Environment systems Composite indicator Ranking

ABSTRACT

This paper develops and applies a Sustainability Ranking of Airports Index to benchmark the performance of airports across multiple factors. The index is a composite indicator with 5 dimensions and 25 indicators. The dimensions are airport services and quality, energy consumption and generation, carbon dioxide emissions and mitigation planning, environmental management and biodiversity, and atmosphere and low emission transport. The index is applied to a sample of 9 airports that take place among the busiest and best airports in the world based on passenger traffic and passenger satisfaction. Data is mined from Corporate Sustainability Reports and related sources. Amsterdam Schiphol, Frankfurt, Munich, Istanbul Atatürk, and London Heathrow airports are the top 5 airports in the sample. The linear regression between the results of the index and annual passenger traffic is found to be 0.1942. The results can be used to benchmark progress in decoupling airport operations from greater environmental impact. The paper provides recommendations for the 5 dimensions of the index based on best practices from the airports in the sample. The index is useful to allow airport managers to coordinate strategies for the sustainable development of energy, water, and environment systems in airports and lift-off towards more sustainable airport practices.

1.1. Environmental impact of individual airports

In Fig. 1, studies that focused on the environmental impact of individual airports are given in the first cluster. Santoli et al.

(2015) analyzed a combined heat and power (CHP) based energy

system proposal for Bari Airport. Silvester et al. (2013) explored

scenarios for integrating electric vehicles in Amsterdam Schiphol

Airport. Postorino and Mantecchini (2014) developed and applied

a carbon footprint method for the land vehicles, on-ground

aircraft, airport handling, and terminal equipment at Bologna

Airport. Kılkış (2014) analyzed a third airport proposal for Istanbul

including the CO₂ emissions impact from a deforested area. Couto

et al. (2015) analyzed a greywater treatment unit in a Brazilian airport. Neto et al. (2012) proposed potable water savings of at

least 66% based on the use of rainwater tanks at Tancredo Neves

International Airport in Brazil. Zietsman and Vanderschuren (2014) assessed a multi-airport development plan in Cape Town

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Airports act as an interface between landside access to ground transport and airside access to the airspace (Ashford and Wright, 1992). A multitude of priorities must be satisfied as efficiently as possible in the complex of terminals, gates, the apron, and the system of runways and taxiways for the timely and secure movement of passengers and aircraft. Adler et al. (2013) benchmarked 43 European airports based on cost and revenue. Other studies benchmarked airports based on management strategies (Ülkü, 2015) and ground handling activities (Schmidberger et al., 2009). Beyond key operations, airports are adopting measures to increase environmental stewardship. Airports are seeking to decouple economic growth from environmental pressure – a key aspect of sustainable development (Cropper, 2008). Fig. 1 classifies the studies that have addressed various aspects of sustainable airports.

1.2. Specific environmental aspects for multiple airports

in South Africa.

Other studies focused on specific aspects of the environmental impact of multiple airports. These studies are given in the second

^{*} Corresponding author. Atatürk Bulvarı No: 221, Kavaklıdere, 06100 Ankara, Turkey.

E-mail addresses: s.kilkis@tudelft.nl (Ş. Kılkış), siir.kilkis@tubitak.gov.tr, siir@kth. se (Ş. Kılkış).

	Subteripto			
	F	fuel usage in airport in Equation (A.3)		
international airport in the sample	L	electrical energy usage in airport		
dimensions of the SRA Index $(D_1 - D_5)$	Т	thermal energy usage in airport		
Airport services and quality dimension	ν	average value, as in HDD and CDD in Ed		
Energy consumption and generation dimension		and (A.2)		
CO ₂ emissions and mitigation planning dimension	x	indicator number in a dimension in Equ		
Environmental management and biodiversity		dimensionless		
dimension	у	dimension number in Equations (1)–(3		
Atmosphere and low emission transport dimension		dimensionless		
energy consumption of the airport in Equation (A.3),	Z	airport number in the sample in Equati		
toe		dimensionless		
min-maxed values of the indicators of the SRA Index				
$(I_{1,1}-I_{5,5})$	Acrony	rms		
data inputs to the indicators prior to the min-max	ACI	Airports Council International		
method	ASQ	Airport Service Quality		
	-			

- equivalent long term noise level, dB(A) Leq
- day-night average sound level, dB(A) Ldn

maximum value among all airports for a given max indicator

- minimum value among all airports for a given indicator min
- Particulate matter up to 10 μ m in diameter, μ g/m³ PM_{10} S sample for the SRA Index application
- share of electricity used for airport cooling S

Greek symbols

Nomenclature

Α

D

 D_1

 D_2

D3

D4

 D_5

Ε

I

i

0	weights of the	dimonsions	of the SPA	Indov
α	weights of the	e aimensions	of the Ska	index

Chemical symbols

- CHKO₂ Potassium formate
- CO_2 Carbon dioxide
- NO_x Nitric oxide (NO) and nitrogen dioxide (NO₂)
- SO_x Sulfur oxides, e.g. sulfur dioxide (SO₂) and sulfur trioxide (SO_3)

Subscripts

- quations (A.1)
- (1)-(3),
-),
- ons (1)–(3),

ACI	Airports Council International
ASQ	Airport Service Quality
AMS	Amsterdam Schiphol Airport
BCN	Barcelona El Prat Airport
CDA	Continuous descent approach
CDD	Cooling degree day
CHP	Combined heat and power
CSR	Corporate Sustainability Report
FRA	Frankfurt Airport
GPU	Ground power units
GRI	Global Reporting Initiative
HDD	Heating degree day
ICN	Seoul Incheon International Airport
IST	Atatürk International Airport
LEED	Leadership in Energy and Environmental Design
LGW	London Gatwick Airport
LHR	London Heathrow Airport
MUC	Munich Airport
NPD	Noise-power-distance
PAX	Annual passenger traffic
SFO	San Francisco International Airport
SRA	Sustainability Ranking of Airports

cluster in Fig. 1. For example, Balaras et al. (2003) estimated up to a 35% energy savings potential in 29 airport buildings in Greece. Wybo (2013) assessed the influence of large-scale photovoltaic (PV) panels on airport safety. Stettler et al. (2011) modeled the CO₂ emissions of the landing and takeoff (LTO) cycle at UK airports. Monsalud et al. (2014) examined CO₂ mitigation strategies at U.S. airports. Carvalho et al. (2013) reviewed practices in Brazilian airports to conserve water. Pitt and Smith (2003) compared waste management at UK airports. Giustozzi et al. (2012) analyzed the use of recycled materials in Italian airport pavements. Upham (2001) compared rising trends in passenger numbers and waste at four European airports.

	Energy	CO ₂ / GHG Emissions	Water	Waste	Air Quality	Noise	Community (Other)
Cluster 1	Santoli et al.	Postorino et al.	Couto et al.				Zietsman et al.
(Individual Airports)	Silvester et al.	Kılkış	Neto et al.				
	Balaras et al.	Stettler et al.	Carvalho et al.	Pitt et al.	Barrett et al.	Schäffer et al.	Ison et al.
(Multiple Airports)	Wybo	Monsalud et al.		Giustozzi et al.	Forsyth		Janić et al.
Aliports)				Upham			Hesse et al.
Cluster 3	Janić	et al.		Janić et al.			
(Multiple Aspects)			Graham				

Download English Version:

https://daneshyari.com/en/article/1744055

Download Persian Version:

https://daneshyari.com/article/1744055

Daneshyari.com