Data on isolating mesenchymal stromal cells from human adipose tissue using a collagenase-free method

Wassim Shebaby ${ }^{\text {a }}$, Eddie K. Abdalla ${ }^{\text {b }}$, Fady Saad ${ }^{\text {c }}$, Wissam H. Faour ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Department of Natural Sciences, School of Arts \& Sciences, Lebanese American University, Byblos, Lebanon, P.O. Box 36, Lebanon
${ }^{\mathrm{b}}$ Lebanese American University Medical Center - Rizk Hospital, Beirut, Lebanon
c Saint Louis Hospital, Jounieh, Lebanon
${ }^{\text {d }}$ School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36, Lebanon

A R TICLE INFO

Article history:

Received 13 November 2015
Received in revised form
20 January 2016
Accepted 1 February 2016
Available online 8 February 2016

Keywords:

Adipose tissue
mesenchymal stromal cell
cell culture
doubling time

Abstract

The present dataset describes a detailed protocol to isolate mesenchymal cells from human fat without the use of collagenase. Human fat specimen, surgically cleaned from non-fat tissues (e.g., blood vessels) and reduced into smaller fat pieces of around $1-3 \mathrm{~mm}$ size, is incubated in complete culture media for five to seven days. Then, cells started to spread out from the fat explants and to grow in cultures according to an exponential pattern. Our data showed that primary mesenchymal cells presenting heterogeneous morphology start to acquire more homogenous fibroblastic-like shape when cultured for longer duration or when subcultured into new flasks. Cell isolation efficiency as well as cell doubling time were also calculated throughout the culturing experimentations and illustrated in a separate figure thereafter. This paper contains data previously considered as an alternative protocol to isolate adipose-derived mesenchymal stem cell published in "Proliferation and differentiation of human adipose-derived mesenchymal stem cells (ASCs) into osteoblastic lineage are passage dependent" [1].

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

[^0]
1. Specifications Table

Subject area More specific sub- ject area	Cell Biology Cell culture, mesenchymal stromal cells
Type of data Image (microscopy), text file, graph, figure How data was Cell counting using light microscope, statistical analysis, math formula acquired calculation	
Data format Raw and analyzed data Experimental Cells isolated from fat explants cultured in plastic flasks factors Spontaneous isolation of mesenchymal cell using in vitro cell culture system and Experimental without the use of collagenase features Data are provided in the article	
Data source location Lebanese American University, Byblos, Lebanon Data accessibility	

2. Value of the data

- The below data provide a detailed and reproducible collagenase-free protocol to isolate mesenchymal stromal cells from human adipose tissue.
- These data enable researchers to isolate various cell types populating fat.
- These data offer the possibility to isolate specific primary cell cultures with a reduced and efficient cell isolation yield.

3. Data

The data presented in this paper correspond to the isolation of mesenchymal stromal cells without digesting human fat pieces with collagenase. Subsequently, cell morphology, primary cell isolation efficiency as well as cell population doubling time were measured using light microscopy analysis and

Fig. 1. Growth kinetic results of adherent mesenchymal cells at passage 1. Primary mesenchymal cells were trypsinized and seeded in 6 -well plates at a density of 3000 cells $/ \mathrm{cm}^{2}$ rendering cells at passage 1 . Cell number in each well was determined with trypan blue exclusion count in triplicate as indicated in methods. Growth rate is compared between various cultivation times. Error bars represent the standard deviation. Values denote mean $(n=3),{ }^{*} P<0.05$ with respect to day 7.

https://daneshyari.com/en/article/175031

Download Persian Version:

https://daneshyari.com/article/175031

Daneshyari.com

[^0]: * Corresponding author. Tel. +961 9547262x2396; fax: +961 9546262.

 E-mail address: wissam.faour@lau.edu.lb (W.H. Faour).
 http://dx.doi.org/10.1016/j.dib.2016.02.002
 2352-3409/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
 (http://creativecommons.org/licenses/by/4.0/).

