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a b s t r a c t

Boundary element method (BEM) is introduced to calculate the heavy oil seepage in this paper. The
pressure contours with different temperatures and arbitrary oil reservoir shapes are obtained by solving
the variable coefficients Darcy’s equations. The numerical simulation results indicate that temperature
has evident effect on pressure contours when the pressure is lower. Varieties of pressure contours with
different boundary conditions coincide well with the heavy oil seepage law, which indicates the validity
and accuracy of BEM in dealing with the irregular boundary problem. The numerical simulation results
can provide theoretical basis for the heavy oil well pattern.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Seepage law of porous media is a highly concerned problem in
the engineering. Many ways are used to study the evolution of
seepage up to the present. Georgette et al. (2014) studied the
porous media flows with heterogeneous modeling method. Nu-
merical simulation results show that the hierarchically coupled
models accurately account for the heterogeneity of the medium
and efficiently incorporate local features into the global response.
New variational inequality formulation is presented by Zheng et al.
(2005) and seepage problems with free surfaces is studied.

In fact, most available research methods for porous media flow
are based on solving the Darcy’s equations (Hou et al., 2013; Dong
et al., 2013; Wang et al., 2010; Lv et al., 2014; Rafiezadeh and
Ashtiani, 2014; Liu et al., 2014). For all seepage problems, low
permeability seepage law in heavy oil reservoirs is one of the most
important subjects. For a long time, geometrical shapes are con-
sidered regular or completely closed and boundary pressure is
constant when we measure the heavy oil pressure. Actually, the
boundary pressures and shapes are various which indicate the
simplified model mentioned above is unreasonable (Zhang et al.,
2006). Because of the complexity of boundary in arbitrary shapes
and different pressures, it is extremely difficult to solve the pro-
blems with conventional computational methods.

BEM is a new numerical method after the finite difference
method and the finite element method and widely used in treating
complex boundary problems for its flexibility. There are two steps
when we solve a definite solution problem with BEM. The first is
change the definite solution problem into a Green function pro-
blem with specific boundary condition. This step can reduce the
dimensions of the given problem and increase computational ef-
ficiency. The second is the discretization of boundary. Values on
boundary are discrete and in internal points are analytic, so the
computational precision of BEM is higher than that of other
methods.

Considering the flexibility of BEM in handle the boundary
conditions (Kikani and Horne, 1988; Kikani and Horne, 1989), we
will study the evolution of heavy oil seepage with this method in
this paper.

2. Numerical method and basic equations

2.1. Mathematical model and boundary integral equation

Engineering seepage problem come down to solve Darcy’s
equations, general vector form of Darcy’s equations can be written
as

= − ⋅∇ ( )V K u 1

Scalar formulas of Eq. (1) are the following:
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where vx, vy and vz are the Darcy’s velocities, kx, ky and kz are the
permeability coefficients in x, y and z directions separately. In
addition, kx, ky and kz are not constants but functions of tem-
perature, water content, asphalt content and porosity et al. u is
potential function and equivalent to the pressure p.

Suppose Q(x,y,z) is the source in the internal domain Ω, then
the continuity equation can be written as

∇⋅ = − ( )V Q 3

Governing equation can be obtained by combining Eqs. (2) and
(3).
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We consider two dimension (2-D) problems in this paper, and
then Eq. (4) can be written as
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Then the 2-D seepage problem can be change into the follow-
ing definite solution problem:
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where Г denotes the whole boundary of heavy oil reservoirs, Г1

and Г2 denote partial boundary and satisfied Г¼Г1þГ2. q is
normal derivative. The boundary can be divided into n parts and
satisfied Г¼Г1þГ2þГ3þ⋯þГn if the boundary conditions are
more complex, q̄ and ū on each part are known qualities.

For solve definite solution problem of Eq. (6), weighted residual
method is used to get the boundary integral equation. The
weighted residual formula is shown in Eq. (7)
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Eq. (8) will be obtained by calculated Eq. (7) with integral
method.
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The boundary integral equation is given in Eq. (9). Details of the
computational process can be obtained in Yang and Zhao (2002).
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where = ( )u u x y,i i i , *q and *u are directional derivative and fun-
damental solution, respectively.
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where *u satisfies the relationship of Eq. (12) and formula of rc is
given in Eq. (13)
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δ ( )x y x y, , ,i i is δ−dirac function, ( )x y, are observation points
and ( )x y,i i are point source. To calculate the unknown quantities u
and q on the boundary, boundary integral equation must be cal-
culated. However, it is impossible to find the analytical solution of
Eq. (9) for certain boundary condition. Therefore, we resort to
numerical means.

2.2. Discretization of boundary integral equation

The discretization forms are different from equation to
equation (Lashgari, 2014). The discretization forms in this paper
are as follows. The internal domain Ω is divided into m units Ω1,
Ω2,…, Ωm. The whole boundary will be divided into (n�m) units
Гmþ1, Гmþ2,…, Гn. Based on the characteristic of constant value
unit, value of each unit can be replaced by the node point value uj

and qj. Then the discretization form of Eq. (9) can be written as
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For convenience, we let

∫ Γ^ = *
( )Γ

H q d
15

ij
j

∫ Γ= *
( )Γ

G u d
16

ij
j

∫∑ Ω= *
( )Ω=

B u Q d
17

i
j

m

1 j

Then Eq. (14) change into
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Let ui is the value of each unit midpoint, =u ui
i when =i j, we

can let
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Then the algebraic equations can be written as
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Correlation discretization forms of coefficient matrices are gi-
ven when =i j by combining Eqs. (10) and (11) and Eqs. (15) and
(16).
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