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a b s t r a c t

The paper presents a semi-analytical solution for the stability of inclined boreholes drilled in isotropic
and anisotropic formations. Conventional analytical or semi-analytical models are designed to yield no
borehole collapse failure along the borehole wall. However, in deep wells, where there are high hoop
stresses acting on the borehole wall, it is difficult to apply the safe mud weight produced by these
ubiquitous models. The proposed solution in this work imposes a constraint on how much failure will
occur along the borehole wall. This risk-controlled stability analysis will produce a safe mud window that
can be realistically achieved during drilling operations. Analytical solutions for stress distribution for
isotropic and anisotropic rocks are presented. In addition, a solution for the upper limit for the mud
window to prevent tensile failure is developed. The initial poroelastic or “undrained” drilling effect on
pore pressure is also incorporated in the discussed models.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Kirsch's solution assumes a linearly elastic isotropic homo-
geneous material for a circular hole in an infinite plane (Fjaer,
2008; Kirsch, 1898). His equations estimate the drilling-induced or
perturbation stresses caused by the creation of a circular cavity in
an infinite plane. Assuming isotropy ignores the effect of en-
dogenic processes like diagenesis, and exogenic processes such as
compaction and erosion that affect most rocks during its forma-
tion. These processes alter the internal rock fabric and conse-
quently its mechanical behavior. It is believed that only 10% of
subsurface formations exhibit a true isotropic behavior. More than
30% of rocks classified as anisotropic have an anisotropy ratio (the
ratio of the horizontal Young's modulus to the vertical one with
respect to the bedding plane) of 1.5 for Young's modulus (Ong,
1994). Due to its simplicity, most formulations for borehole sta-
bility models assume an isotropic linear elasticity model. These
models have fallen short to simulate an accurate representation of
the complex rock anisotropic mechanical frame. The first com-
prehensive anisotropic linear elasticity analysis was developed by
Lekhnitskii (1981). The solution uses the generalized plane strain
assumption to account for the in-plane, uniaxial and anti-plane
stresses. Amadei (1983) extended Lekhnitskii’s work to infinite
cylindrical holes. The solution can be used to estimate stresses in
anisotropic material angularly around the borehole, and radially
away from the borehole wall. It also accounts for the stress field

rotation, borehole inclination and formation dipping effect on
stress perturbation caused by the hole.

Aadnoy and Chenevert (1987) developed an analytical solution
for highly inclined boreholes that assumes an isotropic homo-
genous rock. Their work was employed by McLean and Addis
(1990) to contrast the effect of different shear failure criteria such
as Mohr–Coulomb (MC) and Drucker–Prager (DP). They have also
incorporated a simplified form of the “undrained” pore pressure
effect into the model. However, these criteria ignore the effect of
the intermediate principal stress. Several published criteria in-
corporates all three principal stresses such as the Lade criterion
(Lade, 1977) that was later modified to accommodate rocks with
cohesive strength (Ewy, 1999). Similar work was developed by Al-
Ajmi and Zimmerman (2005, 2006) who extended the Coulomb
criterion. They have utilized a linear “Mogi–Coulomb” criterion
that accounts for the intermediate principal stress. The Mogi–
Coulomb model was contrasted against field data and has de-
monstrated more realistic results when compared to those pro-
duced by MC and Hoek–Brown criteria (Gholami et al., 2014).

The aforementioned authors assume elastic isotropy, and very
few authors in literature have used an anisotropic rock model in
wellbore stability analyses. Aadnoy (1988) was the first to use
Lekhnitskii's seminal work for wellbore stability analysis. Aadnoy
specialized the model for inclined boreholes drilled in anisotropic
formations using a semi-analytical solution. An exact solution for
anisotropic wellbore stability was developed by Ong and Roegiers
(1993) using Amadei's work (1983).

In addition to the elastic anisotropy, the rock’s anisotropy in
strength parameters such as cohesive strength and angle of in-
ternal friction need to be considered. Both matrix and properties
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along bedding planes should be incorporated into the failure
analysis. Transversely isotropic (TI) rocks tend to slip and slide
along their planes of weakness. This is often overlooked and only
matrix failure is considered. Several researchers have investigated
the effect of rock strength anisotropy on rock shear failure (Aoki
et al., 1993; Jaeger et al., 2009; Li et al., 2012; Tien and Kuo, 2001).
These models were incorporated into borehole stability analyses,
but were coupled with an isotropic elastic rock model (Lee et al.,
2012; Zhang, 2013).

In this work, a comprehensive model that couples elastic and
strength anisotropy and pore pressure undrained effect is devel-
oped to fully depict the rock complex nature. In addition, a novel
risk-controlled stability analysis is developed using a semi-analy-
tical approach. The developed model is for cylindrical wellbores
with circular cross-sectional areas.

2. Linear elasticity models

Modeling 3D stress problems in anisotropic formations re-
quires establishing three coordinate systems: 1. The far-field
stresses coordinate system which is referenced to the North-East-
Vertical (NEV) system, 2. The intrinsic rock properties coordinate
system and 3. The borehole coordinate system. In oil and gas ap-
plications, it is useful to reference all properties to the borehole
coordinate system (Aadnoy and Chenevert, 1987). The coordinate
systems are summarized in Fig. 1. In the following subsections, the
anisotropic and isotropic linear elasticity models are briefly pre-
sented and contrasted with an example.

2.1. Anisotropic rock

The generalized Hooke's law in strain–stress form in Voigt
notation is given by

C i j; , 1, 2 6 1i ij jϵ σ= = … ( )

where ϵ, C and σ are the strain, compliance and stress tensors
respectively. The compliance tensor for orthorhombic (ortho-
tropic) material in the intrinsic rock properties coordinate system
is given by
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where Ei, vij and Gij (i j x y, ,= and z are the principal directions of

the orthorhombic material) are the Young’s modulus, Poisson’s
ratio and shear modulus, respectively, in the i and j directions. The
compliance tensor is rotated to the borehole coordinate system to
produce the matrix a, where the off diagonal terms may not have
zero values. Similarly, the far-field stresses are rotated from the
NEV coordinate system to the borehole coordinate system to
produce the following matrix:

3x o y o z o yz o xz o xy o
T

, , , , , ,σ σ σ τ τ τ[ ] ( )

where i o,σ and ij o,τ (i j x y, ,= and z are the principal directions of
the borehole coordinate system) are the far-field in-situ normal
and shear stresses, respectively, rotated to the borehole Cartesian
coordinate system. The superscript T refers to the transpose of the
matrix. A detailed procedure on the stress and compliance tensor
rotation is discussed in (Amadei, 1983).

Lekhnitskii (1981) developed a general analytical solution for
anisotropic linear elasticity and was modified by Amadei (1983)
for cylindrical holes with infinite boundary. The total stress dis-
tribution along the borehole wall in Cartesian coordinates of the
borehole coordinate system for anisotropic formations is given by
(Amadei, 1983)
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where R refers to the real part of the complex expression, i h,σ and

ij h,τ ( i j x y, ,= and z are the principal directions of the borehole
coordinate system) are the induced stresses created by the ex-
cavation of the hole, aij ( i j, 1, 2 6= … ) is the compliance tensor
rotated to the borehole coordinate system. The analytic functions,

kϕ ′, and the other variables are discussed in the Appendix.

2.2. Isotropic rock

The reduced form of Kirsch’s solution for total stress distribu-
tion along the borehole wall is governed by the following equa-
tions in cylindrical coordinates in the r–θ–z directions (Jaeger
et al., 2009):

Fig. 1. Coordinate transformation systems.
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