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a b s t r a c t

A one-dimensional, fractional-order, transient diffusion equation is constructed to model diffusion in
complex geological media. Such a conceptual model permits for the incorporation of a wide range of
velocities as fluid particles in high and low permeability paths perform complex motions. The transient
diffusion equation is non-local in character with both spatial and temporal fractional derivatives. The
pressure distribution is derived in terms of the Laplace transformation and the Mittag–Leffler function.
Results are used to deduce expectations in the early-time response of a fractured well producing
complex reservoirs such as unconventional shales. The flux law considered here allows for declines in
rate that are faster or slower than models based on classical diffusion. A brief survey of the Mittag–Leffler
function and its computation is provided. We apply the results derived to obtain solutions for the
‘trilinear’ model that is often used to evaluate horizontal well performance.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Transient diffusion in heterogeneous porous media is of long-stan-
ding interest in a number of disciplines. Conventional formulations
assume that flux is directly proportional to the imposed pressure
gradient. Understanding flow in media with complex geology and
convoluted flow paths, however, requires formulation of flux laws that
go beyond the requirement that the flux depends on the imposed
gradient because fluid particles that trace complex paths no longer
follow a space–time behavior based on Gauss's distribution that is a
consequence of Darcy's law (Gefen et al., 1983; Le Mẽhautẽ and Crepy,
1983; Nigmatullin, 1984; Chang and Yortsos, 1990; Dassas and Duby,
1995; Caputo, 1998; Molz et al., 2002; Fomin et al., 2011a,b; Raghavan,
2011). The assumptions that underlie these proposals vary in scope
from assuming that the diffusivity varies as a power law with distance,
to assuming that the random motion of particles in the pores and
fractures are a continuous time randomwalk (CTRW), or assuming that
correlation scales are significantly large when compared with the scale
of observation. Some of these formulations lead to fractional deriva-
tives in time and space. But all lead to the conclusion that the mean
square displacement (or mean square deviation) is not a Gaussian. The
purpose of this paper is to examine the transient behavior in a linear
reservoir where the flux law is non-local in that velocity distribution
depends on both previous times and large regions in space by
incorporating a spatial fractional derivative. The model discussed in

this study may be used to evaluate well responses when a number of
mechanisms that operate at different spatial and temporal scales
govern the productive characteristics. This situation is typical of
unconventional reservoirs produced subsequent to hydraulic fractur-
ing. In this scheme the gradient in pressure at a point has by itself no
physical interpretation in that it does not represent the flux. The
expression we use is a generalization of the flux law used in Raghavan
and Chen (2013a,b). By including the space domain, the structure of
the solution changes in a significant way and expands the results in
our earlier work as suggested in Raghavan (2011). A solution is obt-
ained in terms of the Laplace transformation and sample results are
documented through the use of the Stehfest algorithm (1970a,b). The
results of this study have an immediate application to flow in
unconventional reservoirs produced through hydraulic fractures.
Anomalous diffusionwill, in general, result in declines that are different
from those predicated by conventional models and this is not unusual.

Fractional diffusion equations address the phenomena of long-
range dependence and/or trapping events much better than models
governing classical diffusion. Situations such as cracks, cervices and
obstacles that slow down diffusion (subdiffusion) are modeled by
time-fractional diffusion equations and situations where highly
conductive, well connected paths that enhance diffusion (super-
diffusion) are modeled by space-fractional diffusion equations. The
need to model flow by fractional diffusion equations arises in a
number of different contexts: assessing contaminant transport, eva-
luating diffusive behavior in fractured rocks modeled as fractals, and
where mechanisms at different spatial and temporal scales govern
production behavior. Applications of fractional derivatives in the
context of contaminant transport have been discussed for a number
of years (Lenormand, 1992; Benson et al., 2000) primarily because
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plumes spread out faster than the square root of time predicted by
Gaussian diffusion and also because plumes are often skewed rather
than being symmetric (superdiffusion). Implicit in these studies is the
use of the fractional form of Fick's law (Fomin et al., 2011a; Atangana
and Kilicman, 2013). Others have examined contaminant transport in
a multimodal context (Baeumer et al., 2001; Fomin et al., 2010,
2011a) where the contaminant partitions between mobile and
immobile phases and where trapping is the dominant mechanism
(subdiffusion). The influence of transport properties of the rock
under subdiffusion through fractional derivatives was first consid-
ered in Park et al. (2000). This work models flow to a line-source and
attempts to improve upon the fractal model of Chang and Yortsos
(1990) through the fractional-time-derivative model proposed in
Metzler et al. (1994). Over time, this work has been expanded by
several authors; see, for example, Flamenco-Lopez and Camacho-
Velazquez (2001), Camacho-Velázquez et al. (2008), Razminia et al.
(2014), and Ali et al. (2014). Although not emphasized in many of
these works, as noted in Raghavan (2011), use of these models
requires the incorporation of either a fractional form of Darcy's law or
a modification of the conservation equation. A fractional flux law is
the better recourse. Situations that result in superdiffusion; that is,
the role of extremely conductive paths is addressed in Cloot and
Botha (2006). They modified, not surprisingly, the space terms of the
classical diffusion equation in cylindrical coordinates. Here again,
another fractional form of the flux law is required. The justification
for the model chosen follows from their observation that the classical
Theis (1935) solution is inadequate to model fractured rocks with
highly conductive, well connected paths because observed responses
are both under and over estimated at early and at later times, resp-
ectively. That long-range dependencies of the permeability profile
are best addressed through the fractional space derivative is also
noted in Herrick et al. (2002). The goal of our work, as already stated,
will be to explore the combined effects of fractional space and time
terms, and to examine early-time production responses at fractured
wells producing fractured rocks where a number of mechanisms
operate at different spatial and temporal scales.

Consideration of the model discussed here involves the evaluation
of the Mittag–Leffler function in the Laplace domain; a non-trivial
exercise (Verotta, 2010). Our code uses the algorithm described in
Gorenflo et al. (2002); see also Berberan-Santos (2005) and Podlubny
(2005). Often the computation of such functions is avoided. For our
purposes we show that such a step is not advisable and outline our
reasons. Based on experience our view is that, although not trivial, as
already mentioned, the calculations are not formidable.

2. Some preliminary considerations

We briefly review the nonlocal flux law we use to derive the
pressure distribution and briefly touch on the consequences of this
law. The term nonlocal refers to the fact that in this work the flux
at a point is influenced by factors besides the value of the pressure
gradient at the point in question at a particular instant in time.
Justification for such a law may be found in Molz et al. (2002),
Cushman and Ginn (1993), Fomin et al. (2011a,b), Benson et al.
(2013) among others. As we use the Laplace transformation to
derive the solutions of interest, we arrive at expressions for the
pressure distribution in terms of the Mittag–Leffler function.
Accordingly, we briefly review this function and cover ground
that is of direct relevance to this work.

2.1. The flux law

The expression for the flux law used here is of the form

vðx; tÞ ¼ �λα;β
∂1�α
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∂β
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where λα;β ¼ kα;β=μ. Both the exponents α and β are o1 with the
temporal fractional derivative, ∂αf ðtÞ=∂tα, and spatial fractional
derivative, ∂βf ðxÞ=∂xβ , defined in the Caputo (1967) sense as
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From (2.1) it is clear that the flux at a point, for example the
production rate, will no longer be reflected by the instantaneous
pressure gradient but to the values of pressure and gradients that
extend over significant distances and also to previous times. The
latter has been considered by us previously. Both phenomena that
are characteristic of anomalous diffusion, namely long-range and
trapping effects, may be considered through the flux law in (2.1).
As we will see, the structure of the solution changes in a much
more significant way with the incorporation of nonlocal spatial
variables than with the incorporation of time dependent effects. It
appears that the incorporation of α is akin to including local
effects. The flux law in (2.1) will result in a mean square

Nomenclature

a see (5.1) and Fig. 8
c compressibility (L T2/M)
Eα;βðzÞ Mittag–Leffler function; see (2.5) and (2.10)
f(s) function defined in (5.1)
h thickness (L)
k permeability (L2)
kα;β see (2.1)
ℓ reference length (L)
p pressure (M/L/T2)
p0 logarithmic derivative (M/L/T2)
q rate (L3/T)
qDðxD; tDÞ dimensionless flux
t time (T)
α exponent
β exponent
ΓðxÞ gamma function

η diffusivity; various
~η ‘diffusivity’; see (3.5) (Lβþ1=Tα)
λ mobility (L T/M)
μ viscosity (M/L/T)
ν exponent; see (5.2)
ϕ porosity (L3/L3)

Subscripts

D dimensionless
i coordinate, initial
w well bore

Superscript

– Laplace transform
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