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a b s t r a c t

The surge to maintain a high and sustainable gas supply causes shale-gas fields to be developed with a
high number of wells and an extensive infrastructure. This may result in large and complex optimization
problems in order to utilize shared infrastructure, optimize the field design, and improve the recovery of
the natural-gas resource. Solving large-scale, field-wide shale-gas optimization problems put different
requirements on the well and reservoir models than conventional history matching, as it is crucial that
the models are low ordered, numerically efficient and adaptable to changing operating conditions. To this
end, using appropriately designed proxy models is critical. In this paper, we construct a dynamic shale-
well proxy model based on the first principles for gas flow in dry shale-gas reservoirs, rendering a semi-
physical modeling approach between purely data-driven black-box models and detailed numerical
models. To tune proxy models, we propose a parameter-estimation scheme that incorporates prefiltering
of prediction errors between the proxy model and reference data. The prefiltering approach provides a
means for emphasizing certain ranges of the dynamics in the model, and thus constitutes a structured
approach for defining weights in the accompanying weighted least-squares problem. Further, we show
how the proposed approach allows for considering the model tuning and spatial grid design as a joint
problem with respect to the purpose of the proxy model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The rapid increase in exploitation of unconventional gas re-
sources has reshaped the global natural-gas market. Shale gas and
tight gas sands constitute the main sources of unconventional gas
supply, with shale-gas alone estimated at 67% of the share of the
total global technical recoverable unconventional gas resources
(McGlade et al., 2013). The US shale-gas boom has increased the
interest and activity in the natural-gas based chemical industries
(Siirola, 2014), both as a fuel in itself and as feedstock in production
of chemicals, while also having a significant influence on electric
power production (Knudsen et al., 2014c; MIT Energy Initiative,
2011). Shale-gas, being a land-based resource, is tightly connected
to the natural-gas value chain, and has as a such substantial impact
on the economics of all industries engaged in transport, processing
and storage of natural gas.

Economic development of shale-gas assets involve complex
planning and decision making. Due to the characteristic early

decline in well productivity and the sustained low gas price, the
focus in the shale-gas industry has been on maintaining a high
drilling and completion frequency to offset the decline in total field
production. This field-development strategy has caused a high
number of wells and a comprehensive surface network in order to
share equipment and reduce costs, and thereby large and complex
production optimization problems. These inherently challenging
problems, together with the observation of the enormous impact
shale gas has on industries and economics, have generated an in-
terest for structuredmodel-based techniques to optimize both field
development and production, including strategic planning and
design (Cafaro and Grossmann, 2014; Grossmann et al., 2014;
Wilson and Durlofsky, 2013; Yu and Sepehrnoori, 2014), water
handling (Yang et al., 2014), intermittent, shut-in based production
optimization (Knudsen and Foss, 2013; Knudsen et al., 2014a; Tang,
2009), and integration of shale gas and electricity generation
(Knudsen et al., 2014c).

All of the above design and production problems involve
modeling of gas well production, the major well-pad equipment,
and possibly partial or complete modeling of the surface pipeline
network. Common for all these problems, however, is the need to* Corresponding author.
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construct and apply a suitable and sufficiently accurate shale-well
model. A shale-well model of this kind comprises a near-wellbore
or reservoir model, and a tubing or wellbore model to connect
the subsurface flow to the surface production facilities. Although
the integration of subsurface and surface models is challenging in
conventional petroleum production due to the complexity of a
model composed of reservoir and topsidemodels, it is perhaps even
more challenging in shale-gas applications due to the reservoir
dynamics, in particular the fact that shale-gas reservoir dynamics
are fast. Thus, the dynamic interactions between reservoir dy-
namics and production systems are tighter than for conventional
reservoirs.

Numerical shale-gas reservoir models are generally constructed
either as variants of the dual-porosity model for naturally fractured
reservoirs, e.g. (Carlson and Mercer, 1991; Medeiros et al., 2010;
Ozkan et al., 2011), or as fully discretized single-porosity dual-
permeability models (Cipolla et al., 2010). Dual-porosity like
models intuitively fit the matrix-fracture system of shale-gas res-
ervoirs, but are based on an idealized cube-based geometry and
require the definition of reservoir-specific coefficients such as
matrix storativity and interporosity flow. The latter approach,
based on treating the shale matrix blocks and fracture network as
one continuum, renders a high modeling flexibility, but often at the
cost of large and complex models with poor numerical efficiency.
Hence upscaling techniques are frequently applied (Cipolla et al.,
2010; Knudsen et al., 2014b; Wilson and Durlofsky, 2013).
Another widespread technique for rate forecasting from shale-gas
wells is the use of static, semi-analytical or empirical models (Al
Ahmadi et al., 2010; Bello and Wattenbarger, 2010; El-Banbi,
1998; Ilk et al., 2008; Nobakht et al., 2012). Although these
models may be sufficiently accurate and good in matching well
production data, they all assume operation at constant bottomhole
pressure or constant rate, and are therefore not suited for optimi-
zation of multi-well shale-gas systems with changing operating
conditions.

Proxy modeling constitutes a viable modeling approach for a
wide range of shale-gas design and production optimization
problems. Proxy-modeling techniques apply either a black-box or
generic model structure, or a model based on first-principle phys-
ical properties, with parameter tuning. In this paper, we present
and analyze a dynamic dry-gas shale proxymodel constructed from
the properties of linear flow in shale matrix blocks, assembled with
a static tubing model. We then formulate a tuning scheme in order
to fit the proxy to production data. Compared to the conventional
separation of parameter estimation and spatial grid construction,
we show in this paper how these two problems are intimately
related andmay benefit from being considered together. To this end
we use frequency-dependent filters in the parameter estimation to
construct fit-for-purpose reduced-sized proxy models.

The remaining of the paper is organized as follows: In Section 2
we describe general proxy-modeling techniques to motivate and
categorize our proposed shale-well proxymodel. Section 3 presents
the proxy model, with a subsequent description of the tuning
scheme in Section 4. In Section 5 we analyze and demonstrate
properties of the proxy modeling scheme using a numerical case
study, with concluding remarks in Section 6 ending the paper.

2. Reduced-order proxy modeling

Proxy models are used to model systems where a rigorous,
detailed model is difficult to obtain or numerically too expensive
for simulation or optimization purposes. Proxy modeling, which is
also referred to as surrogate modeling, is used within a variety of
applications in statistics and engineering, including many contexts
of reservoir management and analysis, e.g. Awasthi et al. (2007),

Onwunalu et al. (2008), Saputelli et al. (2005), Schiozer et al.
(2008). The definition of a proxy model is somewhat vague, how-
ever, common for all types of proxymodels is the attempt to replace
a complex model or system description with a simpler and more
efficient model, while still retaining sufficient accuracy for the
given application.

Within reservoir modeling and petroleum production optimi-
zation, commonly applied proxy-modeling techniques include
polynomial regression, response-surface models and artificial
neural networks (Bieker et al., 2007). Each of these schemes are
examples of nonlinear black-box model structures used within
system identification in control engineering (Ljung, 1999). Proxy
modelingwith these types of model structuresmay be applied with
very little a priori knowledge of the system, with an acceptable
model fit often obtained in a trial-and-error fashionwith parameter
estimation and testing of different model structures. Although such
black-box modeling approaches may be very efficient and in fact
highly suitable for many applications, their intrinsic disadvantage
lie in not considering the relevant underlying physics of the system.
System behavior that is not inherit in input and output data may
hence be left out in the model, thus limiting the operating range in
which the model is valid.

Compared to the aforementioned, data-driven modeling ap-
proaches, semi-physical or gray-box modeling approaches seek to
combine physical insight and prior knowledge of a process or
system in the selection of a model structure and set of parameters
to tune to achieve required performance (Sj€oberg et al., 1995;
Thompson and Kramer, 1994; Tulleken, 1993). The model struc-
ture applied in semi-physical approaches are often mainly mech-
anistic, but may be augmented with stochastic elements, empirical
relations and parameters that are not necessarily physically inter-
pretable (Johansen and Foss, 1997). Gray-box modeling often pro-
vides a good compromise for constructing small sized and
sufficiently accurate proxy models, compared to rigorous physical
modeling, which may be expensive to construct and render pro-
hibitive large problem sizes, and black-box models that are not
compatiblewith physical reality (Tulleken,1993). As shown in Fig.1,
gray-box models may be constructed directly from physical insight
and available production data, or via a high-fidelity simulator
model to support the choice of model structure. Depending on the
size of the model and level of complexity of the physics included, a
gray-box shale-well model may be sufficiently accurate also for
longer prediction horizons, hence being a viable alternative to

Fig. 1. Connections between different modeling approaches for shale-gas wells.
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