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a b s t r a c t

Numerical simulations of dynamics of different stable dislocation tripoles under influence of
monochromatic standing sound wave were performed. The basic conditions necessary for the drift and
mutual rearrangements between dislocation structures were investigated. The dependence of the drift
velocity of the dislocation tripoles as a function of the frequency and amplitude of the external influence
was obtained. The results of the work can be useful in analysis of motion and self-organization of
dislocation structure under ultrasound influence.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Significant changes of the dislocation structure may occur in
crystalline materials under the influence of alternating loading
and/or ultrasonic waves [1–6]. These changes at high amplitudes
result in an intensive generation of dislocations and formation of
a cellular structure [6–9], nucleation of fatigue cracks and fracture
[10] and hardening or softening of the material [3,11].
Nanostructuring of the surface was revealed under intensive ultra-
sonic treatment [12–14]. On the other hand, a structural relaxation
of non-equilibrium materials takes place under ultrasonic impact
with mediate amplitudes. An increase of thermal stability of amor-
phous state together with the structural relaxation and reduction
of the free volume was observed in metallic glasses [15].
Ultrasonic exposure with amplitudes comparable to the yield
stress led to the hardening of polycrystalline hafnium in the
annealed state and loss of the strength after deformation, which
is related to the generation of defects and relaxation of internal
stresses, respectively [16].

Relaxation of non-equilibrium grain boundaries and an increase
of thermal stability of the microstructure were revealed in
nanocrystalline materials prepared by severe plastic deformation
method [17]. Ultrasonic treatment led to a significant increase of
plasticity of these materials at the retaining or even improving of

the ultimate strength [18,19]. Ultrasound impact on the pre-
deformed nanocrystalline structure of ZrNb alloy invoked dynamic
recovery and significant relaxation of internal stresses at maintain-
ing nanostructured morphology and improved uniformity of the
structure [20]. Understanding of the structural changing occurring
under the ultrasonic impact of different amplitudes and their influ-
ence on the properties of materials requires the study of the mech-
anisms of formation and dynamics of elementary dislocation
structures such as dislocation dipoles and multipoles.

In experimental studies it is possible to determine empirically
the initial and the final positions of the dislocations, while the
peculiarities of the motion of dislocations during ultrasonic treat-
ment are undetectable. Therefore, a theoretical study together with
computer simulation are the most convenient way to study the
dynamics of dislocation systems. Analytical results for the interac-
tion of an elastic wave with a single dislocation [21], a random dis-
tribution of dislocations [22,23] and arrangement of dislocation
walls [24–26] were obtained. Simulation of the motion of a screw
dislocation in the field of the fixed dislocation with the same
Burgers vector was performed by Lomakin [27], and the behavior
of a dislocation dipole (two edge dislocations with opposite signs
of Burgers vector) in an ultrasonic field was studied in Refs.
[28–30]. Note, that the authors [27–30] did not detect any transla-
tional motion of the studied dislocation structures.

The movement of a dislocation tripole under the influence of
oscillating stresses was considered in the paper [31]. The authors
have revealed the occurrence of the tripole’s drift, i.e. the transla-
tional motion of its centre of mass. The velocity of this tripole
was found to be a function of the amplitude and the frequency of
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the external stress. In some cases, depending on the initial condi-
tions, at low frequencies two different stationary solutions were
found, which correspond to different drift velocities. In the first
solution at a certain value of the frequency a drastic increase of
the drift velocity was observed, while in the second solution the
drift velocity sharply reduces to zero. The reason of such behavior
in Ref. [31] has not been fully understood.

The effect of alternating loading on the plastic deformation of a
monocrystal together with the processes of dislocation nucleation
and their motion was studied by Blagoveshchenskii and Panin [32]
by means of computer simulations. Redistribution of dislocations
under ultrasound influence followed by the formation of the
ordered dislocation ensembles with the distinct cellular structure
was found in Refs. [9,33]. Self-organization of such dislocation
structures occurred due to the motion (gliding) both single and
coupled into the multipoles dislocations.

The aim of this work is numerical simulation of translational
movement of stable triple dislocation configurations under influ-
ence of periodic alternating stress with the zero average value.

2. Theoretical background

Velocity of a straight infinite edge dislocation is described with
the relation:

V ¼ B jsjm � signðsÞ: ð1Þ
Here s is a total shear stress in the dislocation glide plane in the
direction of Burgers vector; B is a mobility factor; m is a constant
which is equal to several units at mediate shear stresses. As it fol-
lows from expression (1), in the case of symmetrical cyclic loading
the dislocation exhibits symmetric oscillations with respect to a
certain equilibrium point.

Shear stress for an edge dislocation with Burgers vector of
~b ðb;0; 0Þ in the plane parallel to its glide plane can be written as

sðx; yÞ ¼ Db � xðx
2 � y2Þ

ðx2 þ y2Þ2
; ð2Þ

where D ¼ G=2pð1� mÞ; G is a shear modulus and m is a Poisson’s
coefficient [34]. Analysis of expression (2) shows, that two disloca-
tions with the parallel glide planes at certain positions do not inter-
act with each other (interaction force is equal to zero) and may form
two different coupled stable configurations. One of them is
composed of dislocations of the same sign and is a fragment of
the dislocation wall, the second made up of two dislocations of
the opposite signs of Burgers vector is a dislocation dipole.

Similarly, there are stable systems of three coupled dislocations.
In these systems all of the dislocations may be of the same sign or
one dislocation may have a sign opposite to that of the other two
dislocations. In the latter case we deal with dislocation tripoles.
During plastic deformation such tripoles may be formed by
impingement of individual dislocations on the immobile dipoles.
The structure of the dislocation tripoles is very manifold.

3. Model

Let us suppose that the dislocations in the tripole exhibit an
external alternating loading sðtÞ. We assume that this field is uni-
form within the tripole. In other words, the system experiences the
effect of a standing sound wave with a wavelength much longer
than the possible amplitudes of motion of the dislocations.
Velocity of the dislocations is also considered to be small compared
to the velocity of sound in the material, i.e. we ignore the relativis-
tic effects. We also neglect the effect of crystallographic orientation
of the sample on the dislocation dynamics as well as the influence

of various kinds of impurity atoms and other defects. We consider
only gliding of the dislocations without any climbing process.

Let us choose x-axis as a direction of dislocation glide. x1; x2 and
x3 denote the displacement of the first, second and third disloca-
tions from their equilibrium positions. sij is a shear stress of i-th
dislocation in the position of j-th dislocation. The function sij can
be evaluated using formula (2). For simplicity, we assume that m
is an integer odd number. The system of equations of motion of
dislocation tripole can be written in the following way:

dx1
dt
¼ B S1 � sðtÞ þ s31ðx1 � x3; y1 � y3Þ þ s21ðx1 � x2; y1 � y2Þð Þm

dx2
dt
¼ B S2 � sðtÞ þ s23ðx2 � x3; y2 � y3Þ � s21ðx1 � x2; y1 � y2Þð Þm

dx3
dt
¼ B S3 � sðtÞ � s32ðx2 � x3; y2 � y3Þ � s31ðx1 � x3; y1 � y3Þð Þm:

ð3Þ
Here Si ¼ �1 depends on the sign of the dislocation; sðtÞ is an exter-
nal stress, which is assumed to vary sinusoidally as sðtÞ ¼ s0 sinxt,
where s0 andx are the amplitude and the frequency of the external
load, respectively. Here the phase shift is supposed to be zero,
which corresponds to a standing wave. The first argument of the
function sij contains only the difference ðxi � xjÞ, since the shear
stress of an edge dislocation at some point and in a given plane
depends only on the distance to this point along the x-axis. It is also
taken into account that sji ¼ sij.

For the numerical solution the system of Eq. (3) can be rewrit-
ten in dimensionless variables: ~t ¼ t �x for time and ~x ¼ x �x=Bsm0
for the distance. Let us represent the stresses of interaction of dis-
locations through the universal function that depends only on the
coordinates:

sijðxj � xi; yj � yiÞ ¼ Dbf ijðxj � xi; yj � yiÞ; ð4Þ
where

f ðx; yÞ ¼ xðx2 � y2Þ
ðx2 þ y2Þ2

: ð5Þ

After elementary transformations the system (3) can be written
as

d~x1
d~t
¼ S1 sinð~tÞþ Dbx

Bsmþ10

ðf 31ð~x1�~x3;~y1�~y3Þþ f 21ð~x1�~x2;~y1�~y2Þ½ �
 !m

d~x2
d~t
¼ S2 sinð~tÞþ Dbx

Bsmþ10

ðf 23ð~x2�~x3;~y2�~y3Þ� f 21ð~x1�~x2;~y1�~y2Þ½ �
 !m

d~x3
d~t
¼ S3 sinð~tÞ� Dbx

Bsmþ10

ðf 32ð~x2�~x3;~y2�~y3Þþ f 31ð~x1�~x3;~y1�~y3Þ½ �
 !m

:

ð6Þ
Each equation of the system (6) written in the dimensionless

coordinates depends on the single parameter K ¼ Dbx=Bsmþ10 ,
which is a contribution of interaction between dislocations into
the drift velocity of dislocation tripole. An increase of K corre-
sponds to simultaneous increase of frequency x and/or a decrease
of amplitude s0.

The magnitude of the drift velocity of dislocation tripole in
dimensionless coordinates is

~V ¼ 1
3
� d~x1

d~t
þ d~x2

d~t
þ d~x3

d~t

 !
: ð7Þ

where the bar denotes averaging over the entire loading period. In
particular, as it follows from the system (6), when m ¼ 1, the drift
velocity of the centre of mass of tripole is V ¼ �BsðtÞ=3 ¼ 0, which
corresponds well to the case of motion of dislocations in copper
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