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Abstract

Convective instabilities of viscous conducting fluids play an important role in many physical phenomena in planets and stars. Astro-
physical magnetic fields are usually explained in a framework of the dynamo theory, describing transformation of the kinetic energy of a
flow into magnetic energy. Therefore, an analysis of purely convective states and their bifurcations, as a control parameter is changed,
provides a detailed framework for the subsequent study of magnetic field generation by these states. In this paper, three-dimensional
Rayleigh–Bénard convection in the absence of magnetic field is investigated numerically for various values of the Rayleigh number
and a fixed Prandtl number (corresponding to its value for convection in the Earth’s outer core). On increasing the Rayleigh number,
we identified periodic, quasiperiodic, chaotic and hyperchaotic attractors of the convective system and their bifurcations, thereby describ-
ing a route to spatiotemporal chaos in the convective system. The occurrence of on–off intermittency in the energy time series is
discussed.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal convection is one of the most efficient and
widespread mechanisms of mass and energy transport in
fluids, acting in the terrestrial atmosphere as well as in
the interior of planets and stars. Solar convection is respon-
sible for the formation of fluid cells observable as granular
patterns in the photosphere (Chian and Kamide, 2007).
Convective flows with a strong shear in the solar convec-
tion zone are believed to be responsible for intensification
of the magnetic flux (Brandenburg and Subramanian,
2005). Efficiency of this amplification mechanism relies

on some properties of the velocity field, that should be able
to stretch, twist and fold the magnetic field lines in such
way that magnetic flux is increased (Childress and
Gilbert, 1995). Terrestrial magnetic fields are also gener-
ated by convective flows of a conducting fluid in the liquid
outer core (Rüdiger and Hollerbach, 2004).

Rayleigh–Bénard (R–B) convection refers to the motion
of a viscous fluid in a plane horizontal layer heated from
below in a gravitational field with a vertical temperature
gradient. It has been extensively studied due to the feasibil-
ity of both analytical, numerical and experimental treat-
ments (Chandrasekhar, 1961; Bodenschatz et al., 2000).
For over a century, R–B convection has been explored
for pattern formation in systems outside of equilibrium
(Bénard, 1901; Cross and Hohenberg, 1993). It is also the
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simplest framework to explain the formation of convective
patterns in astro- and geophysics (Fowler, 2005).

Control parameters in R–B convection are the Rayleigh
number, R, measuring the magnitude of the thermal
buoyancy force, and the Prandtl number, P, the ratio of
kinematic viscosity to thermal diffusivity. Values of these
parameters identify properties of the convective flow,
therefore regions in the two-dimensional parameter space
are used to describe instabilities, pattern formation, sym-
metry breaking and transition to turbulence in convection.

The dynamical systems theory and the bifurcation the-
ory have been used to explain transition to turbulence in
the R–B convection since Edward Lorenz’s reduced model
(Lorenz, 1963). Its chaotic behavior, characterized by irreg-
ular time dynamics, sensitivity to initial conditions and
presence of a positive Lyapunov exponent, was a first step
towards a dynamical systems description of a turbulent
flow. The Lyapunov exponents measure the average expo-
nential rate of growth/shrinkage of initially close trajecto-
ries in the phase space. Variating a control parameter of
a hydrodynamic system towards turbulent flows, one
expects the system to become progressively more irregular
in time and space, in a state with more than one positive
Lyapunov exponent – hyperchaotic state (Rössler, 1979).
Hyperchaos was found in generalized Lorenz systems
(Zhou et al., 2008; Macek and Strumik, 2014). In a more
realistic setup, Paul et al. (2011) detected hyperchaos in a
reduced model of the R–B convection, for two-
dimensional flows and keeping only 14 complex and 2 real
Fourier modes of the solution. Hyperchaotic states were
also found in studies of spiral defect chaos using simula-
tions of three-dimensional R–B convection in cylindrical
domains (Egolf et al., 2000; Paul et al., 2007; Karimi and
Paul, 2012 ). The spectrum of Lyapunov exponents was
used ibid. to compute the fractal dimension of the underly-
ing convective state, by this means quantifying the exten-
sive spatiotemporal chaos and studying dependence of
the number of dynamical degrees of freedom on the size
of the system.

In the present paper, results of a study on transition to
hyperchaos in R–B convection in hydrodynamics are
reported. The Prandtl number is fixed at P ¼ 0:3 and the
Rayleigh number is varied as a control parameter. This
value of P is interesting for the study of the geodynamo,
since in the outer core P is estimated to be between 0.1
and 0.5 (Olson, 2007; Fearn and Roberts, 2007). We follow
the works by Podvigina (2006, 2008), where several attrac-
tors and bifurcations of the convective system in the same
range of parameters were identified. The paper is organized
as follows. In Section 2, equations governing the convective
system, boundary conditions and numerical methods are
presented. In Section 3, attractors of the convective system
for increasing values of the Rayleigh number are presented
and an observed route to spatiotemporal chaos is dis-
cussed. Here, we employ the term spatiotemporal chaos
to denote hyperchaos in a spatially extended dynamical
system. The conclusions are given in Section 4.

2. The model

A newtonian incompressible fluid is confined between
two infinite horizontal planes in a square periodic cell

D ¼ ½0; L�2 � ½0; 1�, see Fig. 1. The fluid is uniformly heated
from below. Temperatures at the bottom, T 1, and the top,
T 2, planes are fixed, with T 1 > T 2. Under the Boussinesq
approximation, considering the vertical size of the fluid
container d as a length scale, the vertical heat diffusion time

sv ¼ d2=j as a time scale, and the vertical temperature gra-
dient dT as a temperature scale, the dynamics of three-
dimensional R–B convection in a plane layer is governed,
in a dimensionless form, by Chandrasekhar (1961) and
Getling (1998) the Navier–Stokes equation,

@v

@t
¼ Pr2vþ v� ðr � vÞ þ PRhez �rp; ð1Þ

the heat transfer equation,

@h
@t

¼ r2h� ðv � rÞhþ vz; ð2Þ

and the incompressibility condition,

r � v ¼ 0; ð3Þ
where vðx; tÞ is fluid velocity, pðx; tÞ the modified pressure
and hðx; tÞ ¼ T ðx; tÞ � ðT 1 þ ðT 2 � T 1ÞzÞ is the difference
of the temperature and its linear profile. The dimensionless
parameters are the Prandtl number P (representing the
material properties of the fluid),

P ¼ m
j
;

and the Rayleigh number R (representing the magnitude of
the buoyancy force),

R ¼ agdTd3

mj
;

with g representing the gravitational acceleration, m; j and
a the kinematic viscosity, thermal diffusivity and thermal
expansion coefficients, respectively.

The horizontal boundaries (non-deformable and imper-
meable by the fluid), defined by z ¼ 0 and z ¼ 1, are held at
constant temperatures,

T ðx; tÞjz¼0 ¼ T 1; T ðx; tÞjz¼1 ¼ T 2; T 1 > T 2;

i.e.,

Fig. 1. Computational domain for the horizontal plane layer.
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