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Abstract

Selecting optimal satellites for positioning calculation is a basic problem for the positioning, navigation and timing (PNT) applica-
tions with Global Navigation Satellite System (GNSS), and the Geometric Dilution of Precision (GDOP) is a key index to handle this
problem. In general, the lower the GDOP values are, the more accurate the PNT solution is. Therefore, the minimum value of GDOP
should be pursued. In this paper, we focused on the five-satellite as at least five satellites are required for dual-GNSS constellations.
Utilizing the characteristics of matrix partial orders, the mathematical minimum of GDOP in the five-satellite case together with the opti-
mal distribution of the five satellites has been theoretically derived. Furthermore, from a theoretical point of view, the detailed expres-
sions of the impact of different constellational combinations of these satellites on the GDOP have been obtained. The results
demonstrated that, for dual-GNSS, even if the geometric distribution of the five satellites is fixed, different constellational combinations
of these satellites lead to different values of GDOP. This is different from the single-GNSS case.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

With the modernization of the Global Positioning Sys-
tem (GPS), the revitalization and modernization of the
GLONASS and the deployment of Galileo as well as the
BDS (Beidou System, and also known as Compass), it is
expected that the full operation of multiple constellations
is on the horizon. Benefiting from these Global Navigation
Satellite System (GNSS) constellations, the number of
satellites will be greatly increasing, providing more stable,
reliable and accurate services for positioning, navigation
and timing (PNT) applications. With the PNT applications
using GNSS, the Geometric Dilution of Precision (GDOP)

is a quality measure to specify the additional multiplicative
affect of measurement error on the positioning accuracy
and the timing accuracy. Given the same level of measure-
ment error, the lower GDOP value results in the higher
positioning and timing accuracy. Thus, a low value of
GDOP is preferred. In addition, the minimum of GDOP
(namely, the GDOP optimization) can also be used for
selecting satellites for positioning calculation and position-
ing configuration design (Dempster, 2006; Sharp et al.,
2009; Blanco-Delgado and Nunes, 2010; Xue et al.,
2014a). Specifically, we should choose the combination of
satellites with GDOP as small as possible for positioning
calculation. For the positioning configuration design,
GDOP minimization is a very crucial factor for the GNSS
system design. With large observational freedom, the com-
plete graphs in three-dimensional space with the lowest
GDOP value are required for GNSS constellation design
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to achieve high coverage and best performance of real-time
positioning (Xue and Yang, 2015). Thus, the minimum of
GDOP is worthy of further discussion for PNT applica-
tions with GNSS constellations.

Aiming at calculating the GDOP minimum in single-
GNSS, there are many different algorithms (Fang, 1986;
Parkinson et al., 1996; Sairo et al., 2003; Han et al.,
2014; Xue and Yang, 2015). These algorithms derived the
minimums of GDOP from different points. For instance,
Fang (1986) used an eigenvalue approach and found that
four satellites which are located in the vertices of a regular

tetrahedron give a minimum GDOP of
ffiffiffiffiffiffiffiffi
5=2

p
. Using the

graph theory, a framework to analytically solve the GDOP
optimization with arbitrary observational freedom was
established by Xue and Yang (2015). They studied the
GDOP minimum and the positioning configuration with
the lowest GDOP including constraint and unconstraint.
For instance, in terms of unconstraint, there are many
graphs with the lowest GDOP, such as cones, regular poly-
hedrons, Descartes configuration, etc.

Compared with single-GNSS, the dual-GNSS can
improve the performance of PNT applications (Wang
et al., 2001; Defraigne and Baire, 2011; Angrisano et al.,
2013; Odijk and Teunissen, 2013; Teng and Wang, 2014;
Teunissen et al., 2014; Paziewski and Wielgosz, 2015). In
the process of discussing the GDOP minimum of dual-
GNSS, since more than one clock-offset nuisance parame-
ters are involved, it is much harder to analytically solve the
GDOP. In our previous studies (Teng et al., 2015), the
practical minimum of GDOP for five satellites was dis-
cussed. In this paper, we concentrate on the mathematical
minimum of GDOP for dual-GNSS constellations.

As there are five unknown parameters to be estimated in
dual-GNSS, at least five satellites are required for position-
ing calculation. The remaining parts of this paper are orga-
nized as follows. The definition of GDOP for dual-GNSS
constellations is given in Section 2. The specific mathemati-
cal minimum of GDOP together with the design matrix in
the five-satellite case is theoretically derived in Section 3.
In addition, based on optimal distribution of five satellites
making the DGDOP reach its mathematical minimum, the
impact of different constellational combinations of the five
satellites on the DGDOP has also been given in this section.
Then the specific reason for this phenomenon has been
explained in Section 4. Some concluding remarks and future
research directions are given at the end of this paper.

2. Definition of GDOP for dual-GNSS constellations

In this section, the measurement equation for position-
ing calculation in single-point positioning is introduced
firstly. Then the definition of GDOP and the corresponding
design matrix for dual-GNSS constellations are given.

When the single GNSS constellation (for example GPS)
is used to perform the single-point positioning, the lin-
earization equation for positioning calculation is given by

z1 ¼ H1Dx1 ð1Þ
In Eq. (1), z1 represents the measurement vector,

Dx1 ¼ ½Dr cDt1�T denotes the unknown vector to be esti-
mated and it includes four unknown parameters. In this
unknown vector, Dr and cDt1 denote the positional param-
eters in three dimensions and the receiver clock bias,
respectively. The matrix H1 is called as the design matrix
or the Jacobian matrix of the nonlinear pseudo-distance
equations (Xue et al., 2014b), and it captures the
receiver-satellite geometry (Teunissen, 1998). The design
matrix can be expressed as

H1 ¼

h1 1

h2 1

� � � � � �
ha 1

26664
37775 ð2Þ

where a denotes the number of satellites, hiði ¼ 1; . . . ; aÞ
denotes the direction cosine vector from the receiver to
the ith satellite, and it can be calculated by the approximate
position of the receiver and the position of the ith satellite
in three dimensions. Besides, it satisfies that khik ¼ 1. That
is, the tips of these vectors lie on the surface of a unit
sphere.

Similarly, if one additional constellation (i.e., BDS,
GLOLASS, and Galileo) is combined with GPS, the corre-
sponding measurement equation is expressed as

z2 ¼ H2Dx2 ¼ H2½Dr cDt2�T ð3Þ
with H2 2 Rb�4. The number of row ðbÞ equals the number
of tracked satellites in the additional single constellation.
The parameter cDt2 is the receiver clock bias related with
the corresponding constellation. The receiver clock bias
in Eq. (3) and that in Eq. (1) are different (Wang et al.,
2011; Guo et al., 2015).

Combining Eq. (3) with Eq. (1) leads to

z ¼ HDx ð4Þ
where

z ¼ ½ zT1 zT2 �T
Dx ¼ ½Dr cDt1 cDt2 �T

(
ð5Þ

According to the linear measurement equation in Eq.
(4), if we assume that the measurements from different
satellites have the same accuracy and they are also statisti-
cally independent, then the GDOP in the single-point posi-
tioning for dual-GNSS constellations can be defined as

DGDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ðHTHÞ�1�

q
ð6Þ

where the design matrix is given by

H ¼
hT1 � � � hTa hTaþ1 � � � hTaþb

1 � � � 1 0 � � � 0

0 � � � 0 1 � � � 1

264
375

T

ð7Þ
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