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a b s t r a c t

In this study, we consider the propagation of hard electromagnetic emissions in the magnetosphere of a

pulsar based on General Relativity and nonlinear vacuum electrodynamics. We show that the radiation will

propagate at different velocities in the magnetosphere of a pulsar and form two normal modes, which are

polarized in mutually orthogonal planes. We calculate the delay between the two orthogonal modes as they

propagate from the pulsar to the detection device.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Theory [1] and experiments [2] show that the electrodynamics are

nonlinear in a vacuum. Therefore, studies [3–10] of various manifes-

tations of nonlinearity in electrodynamics are of undoubted interest.

A number of recent studies [11–19] have considered various ef-

fects of nonlinear vacuum electrodynamics as well as the possibil-

ity of their measurement in the laboratory. However, the magnetic

fields that can be created in the laboratory B ∼ 105 G are significantly

smaller than the quantum value Bq = m2c3/(eh̄) = 4.41 × 1013 G, so

their observation will only be possible in the future after further de-

velopments in measurement technology. Therefore, at present, the

main focus is on the astrophysical effects of nonlinear vacuum elec-

trodynamics that occur in the magnetic fields B ∼ Bq of pulsars and

collapsars.

The effects of nonlinear corrections of the vacuum electrodynam-

ics on the polarization and directivity of the radiation from X-ray pul-

sars were first studied in [20–22]. These calculations showed that an

electromagnetic wave passing through the magnetic field of a pul-

sar should experience nonlinear electrodynamic birefringence, where

it should be split into two normal modes with mutually orthogo-

nal polarization to be distributed via non-coincident rays at different

speeds. However, in the magnetosphere of a pulsar, X-rays should also

experience birefringence due to the presence of plasma.
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As shown in [22], at a certain concentration of plasma, the bire-

fringence caused by nonlinear vacuum electrodynamics exceeds that

induced by plasma. For gamma radiation, due to its higher frequency,

the distorting effect of the plasma is not noticeable. Therefore, infor-

mation about the distribution and density of the field in the emitting

region can be obtained by studying the polarization states of the hard

radiation of pulsars [22].

These studies were continued in [23–30]. For some special cases

(the propagation of an electromagnetic wave in the plane of the

magnetic equator and the magnetic meridian of pulsars) [27–29], it

was shown that the main nonlinear electrodynamic effect, which can

be registered on Earth, differs between the velocities of the normal

modes in the magnetic field of a pulsar [29,30]. However, in previous

studies [24,25,27], these calculations were performed for only a few

simple cases.

Therefore, we aim to calculate this effect in the most general case

where an electromagnetic pulse passes through the magnetic field

of a pulsar in a random direction. We assume that at some point in

the magnetosphere or on the surface of a pulsar, there is a relatively

short burst of hard radiation. We also assume that the electromag-

netic pulse generated during this event is either unpolarized or it has

elliptical polarization [21].

In the strong magnetic field of a pulsar, the radiation pulse splits

into two pulses due to birefringence, which are polarized in mu-

tually perpendicular planes with different velocities. Therefore, the

two electromagnetic pulses emitted at the same time from the same

source will arrive at the recording device installed on a near-Earth
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satellite over different beams at different times t2 �= t1. This device

will first register the arrival of the front part of a more rapid pulse

and the polarization of the detected radiation will be linear over time

t2 − t1. After this period of time, the front part of the second pulse

with orthogonal polarization will arrive at the recorder. Therefore,

the further polarization of the total momentum will be arbitrary. To

observe this effect, electromagnetic radiation detectors for pulsars

must be equipped with devices that can measure the polarization

state of the radiation.

The manifestation of nonlinear electrodynamic birefringence in

the general case where a relatively short electromagnetic pulse

passes the magnetic field of a pulsar in an arbitrary direction, as well

as the calculation of the period t2 − t1, are obtained for the first time

in the present study.

2. Equations for nonlinear vacuum electrodynamics

and gravitation

We consider the nonlinear post-Maxwell electrodynamics, which

are a direct consequence of quantum electrodynamics [1]. The

Lagrangian [31] has the form

L =
√−g

32π
{2I2 + ξ [(η1 − 2η2)I2

2 + 4η2I4]} −
√−g

c
jβAβ,

where jβ is the current density four-vector, g is the determinant

of the metric tensor, ξ = 1/B2
q, I2 = Fβσ Fσβ , and I4 = Fβσ FσνFνμFμβ

are invariants of the electromagnetic tensor Fβσ , and according

to quantum electrodynamics, η1 = e2/(45π h̄c) = 5.1 × 10−5, η2 =
7e2/(180π h̄c) = 9.0 × 10−5.

The field equations derived from this Lagrangian have the form

1√−g

∂

∂xβ
{√−gQσβ} = −4π

c
jσ , (2.1)

Qσβ = 8π
∂L

∂Fβσ
= {1 + ξ (η1 − 2η2)I2}Fσβ + 4ξη2FσνFνμFμβ.

The second pair of electrodynamics equations agrees with the

corresponding equations from Maxwell’s theory

∂Fμβ

∂xν
+ ∂Fβν

∂xμ
+ ∂Fνμ

∂xβ
= 0. (2.2)

The metric tensor in Eq. (2.2) satisfies Einstein equations [32]

Rβσ − 1

2
gβσ R = −8πG

c4
Tβσ , (2.3)

where Rβσ = Rν
βσν

is the Ricci tensor and Tβσ is the energy–

momentum tensor of the matter and all fields, including electromag-

netic. The system of equations (2.1)–(2.3) in our problem is addressed

by the method of successive approximations with a precision linear in

the small dimensionless parameters: the gravitational potential and

post-Maxwell amendments. The gravitational field of the pulsar is as-

sumed to be spherically symmetric and in the harmonic Fock coordi-

nates [32], the metric will be expanded in the small parameter α/r

with the required accuracy

g00 = 1 − 2α

r
, grr = −1 − 2α

r
,

gθθ = r2grr, gφφ = gθθ sin
2 θ, (2.4)

where α = γ M/c2, γ is a gravitational constant, and M is the mass of

the pulsar.

Suppose that at time t = 0, a hard radiation impulse is emitted

from the point r = r0 in the pulsar magnetosphere. Then, because of

birefringence in the magnetic field of the pulsar, the impulse will split

[33] into two impulses with orthogonal polarizations, which move at

different speeds.

For convenience, we introduce the following spherical coordinate

system. Consider a beam for the first normal mode and draw a tan-

gent to it at the point r = r0. The axis of the spherical coordinate sys-

tem will be directed such that the tangent to the chosen beam and the

center of the pulsar will lie in the same plane, and θ = π/2, and the

azimuthal coordinate φ of the source of hard radiation will be equal

to φ = 0.

Without loss of generality, we assume that in this coordinate sys-

tem, the vector of the magnetic dipole moment of the pulsar m is

directed to a point with spherical coordinates θ0 and φ0. Then, the

Cartesian components of the magnetic dipole moment m take the

form

mx = |m| sin θ0 cos φ0, my = |m| sin θ0 sin φ0, mz = |m| cos θ0.

As is accepted [34] in problems of celestial mechanics, instead of the

radial coordinate r, we introduce the coordinate u = 1/r. Then, the

non-zero components of the dipole electromagnetic field tensor of

the pulsar in the coordinate system u, θ , φ, with the required accuracy

for our purposes will be

Fuθ = −Fθu = |m| sin θ0 sin(φ − φ0),

Fuφ = −Fφu = |m| sin θ [sin θ0 cos θ cos(φ − φ0) − sin θ cos θ0],

Fφθ = −Fθφ = 2|m|u sin θ [sin θ0 sin θ cos(φ − φ0) + cos θ cos θ0].

(2.5)

In electrodynamics, the eikonal method [32,33,35,36] is used

when solving most problems, which allows us to study the motion of

electromagnetic impulses based on their beams. Applications of this

method to nonlinear electrodynamics have shown [33,37] that the

propagation of electromagnetic waves in external electromagnetic

and gravitational fields in nonlinear electrodynamics with field equa-

tions (2.1)–(2.3) is equivalent to the propagation of the normal modes

through the isotropic geodesics in effective space-time, for which the

metric tensor G
e f f (1,2)
νμ has the form

Ge f f (1,2)
νμ = gνμ − 4η(1,2)ξFνβgβσ Fσμ. (2.6)

Therefore, studies of the laws of propagation for electromagnetic im-

pulses in the magnetic (2.5) and gravitational (2.4) fields of a pul-

sar can be performed conveniently not by using Eqs. (2.1)–(2.2), but

based on the analysis of isotropic geodesics in space-time with the

metric tensor (6).

Let us substitute Expressions (2.4) and (2.5) into (2.6), and write

the components of the metric tensor of the effective space-time

G
e f f (1,2)
νμ ≡ G(1,2)

νμ explicitly as

G(1,2)
00

= 1 − 2αu,

G(1,2)
uu = −1 + 2αu

u4
− 4m2ξη1,2u2{sin

2 θ0 sin
2(φ − φ0)

+ [sin θ0 cos θ cos(φ − φ0) − sin θ cos θ0]2},
G(1,2)

uθ
= 8m2ξη1,2u3[sin θ0 sin θ cos(φ − φ0) + cos θ cos θ0]

× [sin θ0 cos θ cos(φ − φ0) − sin θ cos θ0],

G(1,2)
uφ

= −8m2ξη1,2u3[sin θ0 sin θ cos(φ − φ0) + cos θ cos θ0]

× sin θ sin θ0 sin(φ − φ0),

G(1,2)
θθ

= − (1 + 2αu)

u2
− 4m2ξη1,2u4{sin

2 θ0 sin
2(φ − φ0)

+ 4[sin θ0 sin θ cos(φ − φ0) + cos θ cos θ0]2},
G(1,2)

θφ
= −4m2ξη1,2u4[sin θ0 cos θ cos(φ − φ0) − sin θ cos θ0]

× sin θ sin θ0 sin(φ − φ0),

G(1,2)
φφ

= −
{

(1 + 2αu)

u2
+ 4m2ξη1,2u4{[sin θ0 cos θ cos(φ − φ0)



Download English Version:

https://daneshyari.com/en/article/1770611

Download Persian Version:

https://daneshyari.com/article/1770611

Daneshyari.com

https://daneshyari.com/en/article/1770611
https://daneshyari.com/article/1770611
https://daneshyari.com

