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h i g h l i g h t s 

• Calculate intensity of gravitational wave for oscillating orbit. 
• Calculate intensity of gravitational wave for oscillating circular orbit. 
• Calculate intensity of gravitational wave for oscillating elliptic orbit. 
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a b s t r a c t 

This paper attempts to formulate a way for calculating the intensity of gravitational wave from two point 

masses in Keplerian circular and elliptic orbits. The intensity is calculated with the assumption that the 

orbital plane of the binary undergoes small oscillation about the equilibrium x-y plane. This problem is 

simplification of a physically possible orbit where one of the point masses is spinning whereby the spin- 

orbit force drives the orbital plane to wobble in a complicated manner. It is shown that the total energy 

of gravitational wave emitted by the binary in this case is dominated by the parameters which take into 

account the oscillation of the plane. The results presented are in fact a generalization of the classic results 

of Landau and Lifshitz. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Gravitational waves (GWs) have always attracted theoreticians 

and experimentalists in the field of cosmology and gravitation as a 

new tool to understand the universe. Scientists have been working 

vigorously ever since their prediction by the General Theory of 

Relativity to meet the challenge of detecting the ultra-weak quiv- 

ers generated by these waves, and thereby unlocking the wealth of 

information contained in them about our universe and its evolu- 

tion. As a result, the study of gravitational waves has become the 

focus of many physicists and lately there have been several works 

in both to develop theories as well as to improve the technology 

for detecting them. Earth-based laser-interferometric detectors 

of gravitational wave are now collecting data, and LIGO has just 

completed the longest scientific run ( Abbott et al. 2016 ) to date 

and confirmed their existence. In such an exciting and important 

time of gravitational wave research, every bit of information on 

gravitational wave, be it theoretical, computational or experi- 
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mental, is valuable. Binary star systems, consisting of compact 

objects such as black holes and neutron stars, are relatively strong 

sources of gravitational wave. Calculation of energy emitted due 

to gravitational wave by point masses in Keplerian elliptical orbit 

was performed by Peters and Mathews (1963) ; Landau and Lifshitz 

(1975) . In current literature, the objectives of gravitational wave 

research are more focused on detection of GW ( Grote 2008; Berti 

et al. 2008; Mendell and Wette 2008; Shoemaker et al. 2008 ) 

and on evolution of GW sources ( Cutler, Kennefick and Poisson 

1994; Ryan 1995; Glampedakis and Kennefick 2002; Gergely and 

Keresztes 2003 ). In present paper we consider the case that the 

orbital plane does not remain invariant on a plane. This is quite 

possible because in a binary where one of the bodies is spinning, 

the spin orbit-force drives the orbital plane to precession ( Vecchio 

2004 ) or to oscillate in a complex manner ( Mashhoon and Singh 

2006 ). Such precession or oscillation modulates the GW signal 

and the total energy emitted also changes. Here we consider a 

simplified problem from the scenario reported by Mashhoon and 

Singh (2006) . Let two point masses in a Keplerian binary revolve 

round the center-of-mass in circular orbit and at the same time, 

the plane of the orbit is undergoing small oscillation about the 
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equilibrium x-y plane. We consider that the amplitude of angular 

oscillation about the x-y plane is very small compared to the ra- 

dius of the orbit. We then calculate the energy emitted separately 

in the two polarization modes of gravitational wave and the total 

energy emitted i.e. intensity in all directions. We found that the 

amount of emitted energy depends on the nature of oscillation of 

the plane - in particular, the angular frequency of oscillation about 

the x-y plane. This is an important finding and we feel that many 

researchers would like to know the way to this result. The paper 

is organized as follows: In Section 2 , we briefly summarize the 

important formulae of gravitational wave. Section 3 is about the 

review of the problem and represents the subsequent calculation 

of gravitational radiation from oscillating circular orbits and from 

oscillating elliptic orbits respectively of a Keplerian binary. Finally, 

Section 4 contains the conclusion. 

2. Gravitational wave 

Gravitational radiation emission from various astrophysical 

sources has been the focus of many researches ( Zimmermann 

and Szedenits Jr 1999; Beltrami and Chau 1985; Dionysiou 1986; 

Shibata 1993; Moreno-Garrido, Buitrago and Mediavilla 1994; 

Moreno-Garrido, Buitrago and Mediavilla 1995; Blanchet 1996 ). Let 

us consider a source of gravitational radiation characterized by a 

mass quadrupole moment tensor D αβ with the six elements D xx , 

D yy , D zz , D xy , D yz , D zx , with respect to a set of fixed inertial axes 

( x,y,z ). We define D αβ as by Landau and Lifshitz (1975 ), that is, 

D αβ = ∫ ρ
(
3 x αx β − δαβr 2 

)
dV (1) 

where ρ is the mass density, and r 2 = x 2 + y 2 + z 2 , d V = d xd yd z. 

The waves can be taken to be plane in view of the typically large 

distance between the source and the observer. The two indepen- 

dent polarization states of the gravitational wave can be repre- 

sented by the three-dimensional symmetric, unit polarization ten- 

sor e αβ satisfying the relations 

e αα = 0 , e αβ n β = 0 , e αβe αβ = 1 , (2) 

where ˆ n is a unit vector in the direction of propagation of the 

wave. Let us label the two polarizations by ( Peters and Mathews 

1963 ) 

e + = 

1 √ 

2 

(
ˆ θ ˆ θ − ˆ ϕ ̂  ϕ 

)
, e × = 

1 √ 

2 

(
ˆ θ ˆ ϕ + ˆ ϕ ̂

 θ
)
, (3) 

where θ and ϕ are conventional polar coordinates. In this basis, 

the waveform can be written as ( Kochanek et al. 1990 ) 

rh = ( ̈D θθ − D̈ ϕ ϕ ) e + + 2 ̈D θϕ e ×, (4) 

where h is the metric perturbation or the GW waveform, and D θθ , 

D θϕ , D ϕϕ are the physical components of D ij (the Cartesian compo- 

nents of quadrupole tensor) projected along the directions of the 

spherical unit vectors ˆ θ and ˆ ϕ . There exists canonical procedure 

for obtaining these components, but we simply quote the results 

from Kochanek et al. (1990) : 

D θθ = 

(
D xx co s 2 ϕ + D yy si n 

2 ϕ + D xy sin 2 ϕ 

)
co s 2 θ

+ D zz si n 

2 θ − ( D xz cosϕ + D yz sinϕ ) sin 2 θ, 

D ϕϕ = D xx si n 

2 ϕ + D yy co s 2 ϕ − D xy sin 2 ϕ, 

D θϕ = −1 

2 

( D xx − D yy ) cosθsin 2 ϕ + D xy cosθcos 2 ϕ 

+ ( D xz sinϕ − D yz cosϕ ) sinθ . (5) 

The expressions for the intensity of radiation of a given polar- 

ization into solid angle d � are ( Landau and Lifshitz 1975 ) 

d I = 

G 

72 πc 5 

(
d 3 D αβ

d t 3 
e αβ

)2 

d � (6) 

where G is the Newton’s gravitational constant and c is the speed 

of light in free space. Using Eqs. (3) and ( 4 ), we can write for the 

intensity of GW in ( ×) polarization as 

d I 1 
d�

= 

G 

72 πc 5 

(
2 

d 3 D θϕ 

d t 3 
1 √ 

2 

)2 

= 

G 

36 πc 5 

(
d 3 D θϕ 

d t 3 

)2 

, (7) 

and that in ( + ) polarization as 

d I 2 
d�

= 

G 

72 πc 5 

[(
d 3 D θθ

d t 3 
− d 3 D ϕϕ 

d t 3 

)
1 √ 

2 

]2 

= 

G 

144 πc 5 

(
d 3 D θθ

d t 3 
− d 3 D ϕϕ 

d t 3 

)2 

(8) 

Next we apply these formulae to find out the intensity of gravi- 

tational wave emitted by a Keplerian binary whose orbital plane is 

oscillating about the equilibrium x-y plane. 

3. Intensity of gravitational wave from a binary with 

oscillating orbital plane 

In many astrophysical binary star systems, the orbit of the 

stars undergoes precession and oscillation due to many perturb- 

ing forces, such as, spin-orbit, spin-spin interactions. Specifically, 

the spin-orbit force drives the orbital plane to oscillate about the 

equilibrium plane in a quite complicated manner. One typical case 

is analyzed by Mashhoon and Singh ( 2006 ). 

We consider a simplified situation defined by an almost fixed 

orbital plane confined to the x-y plane, but the orbital plane un- 

dergoes very small angular oscillation about the equilibrium x-y 

plane. This situation simulates some of the characteristics of or- 

bital motion of a Keplerian binary with one particle having small 

spin. Now, we define the orbit by the following orbital variables: 

r = constant , θ = 

π

2 

− bsin 

ω 

n 

t , ϕ = ωt (9) 

where ω is the Newtonian angular frequency of the orbit in the 

x-y plane, r = | −→ 

r 1 − −→ 

r 2 | ; −→ 

r 1 , 
−→ 

r 2 being the positions of the particles 

of mass m 1 and m 2 , respectively, and b is a very small parameter 

( b � 1) characterizing the angular oscillation about the x-y plane. 

Now to simplify, let us consider the frequency of oscillation of the 

orbital plane is same as the frequency of orbital motion ( Mashhoon 

and Singh 2006 ). That is the time taken for one complete orbital 

motion is the same as the time taken for a complete oscillation of 

the plane. So ω is same for both. The complicated wobble motion 

can be represented by a single ω. But when the frequencies are 

not same, the resulted frequency of the complicated motion can 

be presented by ω 
n where n is a parameter that relates the two 

frequencies. That is when n = 1 , the two frequencies are same. 

Now, we approximate the Cartesian components of the vector � r 

as: 

x ∼= 

rcosωt 

y ∼= 

rsinωt 

z ∼= 

rbsin 

ω 

n 

t (10) 

Then, the quadrupole moments are: 

D xx = μr 2 
(
3 co s 2 ωt − 1 

)
, D yy = μr 2 

(
3 si n 

2 ωt − 1 

)
, 

D xy = 

3 

2 

μr 2 sin 2 ωt, D zz = μr 2 
(

3 b 2 si n 

2 ω 

n 

t − 1 

)
, 

D xz = 3 μb r 2 
(

cosωtsin 

ω 

n 

t 

)
, D yz = 3 μb r 2 

(
sinωtsin 

ω 

n 

t 

)
(11) 

where μ = 

m 1 m 2 
m 1 + m 2 

is the reduced mass of the binary. Now, since 

the system is rapidly rotating about the z-axis, average over the 

angle ϕ is appropriate. Next, we take an average over the orbital 
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