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a b s t r a c t

We study the variational principle over an Hilbert–Einstein like action for an extended geometry taking
into account torsion and non-metricity. By extending the semi-Riemannian geometry, we obtain an
effective energy–momentum tensor which can be interpreted as physical sources. As an application we
develop a new manner to obtain the gravitational wave equations on a Weyl-integrable manifold taking
into account the non-metricity and non-trivial boundary conditions on the minimization of the action,
which can be identified as possible sources for the cosmological constant and provides two different
equations for gravitational waves. We examine gravitational waves in a pre-inflationary cosmological
model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the standard treatment to minimize the action, when a
manifold has a boundary ∂M, the action should be supplemented
by a boundary term, so that the variational principle to be well-
defined [1,2]. However, this is not the only manner to study
this problem. As was recently demonstrated [3], there is another
way to include the flux around a hypersurface that encloses a
physical source without the inclusion of another term in the
Hilbert–Einstein (HE) action. This treatment imposes a constraint
on the dynamics obtained by varying the EH action. In that paper
was demonstrated that the non-zero flux of the vector metric
fluctuations through the closed 3D Gaussian-like hypersurface,
is responsible for the gauge-invariance of gravitational waves. In
present paper we are dealing with the variational principle over
a Hilbert–Einstein like action, using an extended geometry with
torsion and non-metricity, from which we obtain an effective
energy–momentum tensor with sources in the torsion and the
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non-metricity. It can be viewed in a Riemannian geometry
as a describing an effective stress tensor that represents a
geometrically induced matter. Additionally, we develop a new
manner to obtain gravitational waves on a Weyl-integrable
manifold, which has non-metricity and nontrivial boundary terms
included.

The paper is organized as follows: in the following section
we shall study the general formalism. In Section 4 we examine
the formalism in absence of torsion, taking into account purely
Weylian contributions. In Section 5 we deal only with the
contributions due to boundary terms. In Section 6 we examine an
example in which massless gravitons are emitted during a pre-
inflationary epoch of the universe. Finally, in Section 7 we develop
some final remarks.

2. General formalism

We consider the variational principle in presence of torsion
and non-metricity in an Hilbert–Einstein action. We shall start
by considering an action in an extended geometry (i.e. a non-
Riemannianmanifold) conformed by a gravitational sectorwithout
the presence of matter in such generalized geometry. The
Hilbert–Einstein action was extensively studied in Riemannian
geometry [4], but we shall deal with an extended geometry:

S =
1
2κ


V
d4x

√
−g R, (1)
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where V denotes the volume of a spacetime manifold featured
by a non-metricity [5,6] and a general torsion [5,7]. Furthermore,
g is the determinant of the metric tensor gαβ , the gravitational
coupling is denoted by κ = 8πG and R = gαβRαβ is the scalar
curvature. For a coordinate basis of the tangent space {∂σ }, the
components of the Riemann tensor are given by

Rαβµν = Γ α
βν,µ − Γ α

βµ,ν + Γ σ
βνΓ

α
σµ − Γ σ

βµΓ
α
σν, (2)

where the symbols Γ α
µν denote the coordinate components for a

generalized connection defined by [5,8]

∇∂α∂β = Γ ϵ
βα∂ϵ . (3)

These components can be written in the general form

Γ σ
µν =


σ
µν


+ Kσµν, (4)

where

γ

αβ


are the components of the usual Riemannian

connection (the second kind Christoffel symbols) and Kσµν is a
contortion tensor due to torsion and non-metricity, defined by [9]

Kσµν = −
gβσ

2
{τ ανβ gµα + τ αµβ gαν − τ ανµ gαβ

+Nµβν + Nβνµ − Nµνβ}, (5)

such that τ αµν and Nαβγ are respectively the torsion and the non-
metricity tensors. For a coordinate basis, they are

τ αµν = Γ α
µν − Γ α

νµ, (6)

Nαβγ = gβγ ;α, (7)

where the semicolon denotes the covariant derivative defined in
terms of the Γ connection (i.e. defined on the extended manifold).

Now, in order to derive the dynamical equations for gravita-
tional waves on this general space-time manifold in a novel and
consistent manner, we shall use a variational procedure. The vari-
ation of the action (1) leaves to the expression

δ
√

−g R


=
√

−g

δgαβGαβ + gαβδRαβ


, (8)

where Gαβ = Rαβ − (1/2)R gαβ is a generalization of the
Einstein tensor, due to the fact that it is calculated in terms
of the Γ connection (4). Therefore, it is easy to show that the
generalized Einstein tensor contains contributions associated with
both tensors, torsion and non-metricity. The last term between
brackets of the Eq. (8) can be written as a generalized Palatini’s
identity in the form

gαβ δRαβ = Wµ
;µ − gαβ ;µWµ

αβ

−
1
2
gαβ(δΓ µ

σβ τ
σ
αµ + δΓ µ

σα τ
σ
βµ), (9)

where Wµ
= gαβ Wµ

αβ . Here, we have introduced the auxiliary
tensorWµ

αβ defined by

Wµ
αβ = δΓ

µ
αβ − δΓ σ

σβ δ
µ
α . (10)

Inserting (9) in (8), and using the identity gαν
;µ = −gβν gασ Nσβµ,

we obtain the variation of the gravitational sector of the action (1)

δS =


V
d4x

√
−g Gαβδgαβ +


V
d4x

√
−g Wµ

;µ

+


V
d4x

√
−g NµαβWβµα

−
1
2


V
d4x

√
−g ζαβgαβ , (11)

where ζαβ is an auxiliary tensor field, given by

ζαβ = δΓ
µ
σβτ

σ
αµ + δΓ µ

σατ
σ
βµ. (12)

The third and fourth integrals in (11), are respectively related to
the presence of non-metricity and torsion. On the other hand,
the second integral in (11) can be reduced to a 3D hypersurface
integral, in virtue of the Stokes Theorem:

V
d4x

√
−g Wµ

;µ =


∂V

d3x
√

−g Wµnµ, (13)

where nµ is a vector field which is normal to the hypersurface ∂V .
It is usual in the literature to suppose that the surface integral
must be neglected when the radius of ∂V is large enough to
impose that the field Wµ

→ 0 in such limit, or when Wµ is
tangent to ∂V , that is, when Wµ satisfies the relation Wµnµ = 0.
In this paper we shall adopt a different path, and we shall see
that the 3D hypersurface term is a source for the cosmological
constant [3]. From the expression (13), can be noticed that the term
Wµ

; ν = gαβ
; ν Wµ

αβ + gαβ Wµ

αβ ; ν ≠ gαβ Wµ

αβ ; ν has contributions
of non-metricity. This implies that, if we drop this term, the new
contribution is not very important. However, when we neglect
such boundary term, we must be careful with non-metricity.

We must notice that the Einstein tensor in (11) can be written
as a Riemannian part, plus a non-Riemannian one, in the form

Gαβ = Ḡαβ + Kµµβ |α − Kµαβ |µ + K νµβK
µ
να − K ναβK

µ
νµ

−
gσγ

2
(Kµµγ |σ − Kµσγ |µ + K νµγ K

µ
νσ − K νσγ K

µ
νµ) gαβ . (14)

In this expression, the bar in Ḡαβ indicates that the Einstein tensor
is calculated with the Levi-Civita connections. The symbol ‘‘|’’
denotes the Riemannian covariant derivative. It follows from (14)
that when the non-metricity and the torsion vanish. The Einstein
tensor in the first integral of (11), simply reduces to the usual
Einstein tensor calculated with the Levi-Civita connections.

Now, using the Eqs. (4) and (5), the auxiliary tensorW σ
αβ and the

vector field W σ , can be written as

Wµ
αβ =


gλµ

2
{δgαλ,β + δgλβ,α − δgβα,λ − τ

ρ
βλ δgαρ − τ

ρ
αλ δgρβ}

−
δgλµ

2
{gαλ,β + gλβ,α − gβµ,λ − τ

ρ
βλ gαρ − τ

ρ
αλ gρβ

−Nαλβ − Nλβα + Nβαλ}

−
gλσ

4
(δgλσ,β δµα + δgλσ,α δ

µ
β )+

δgλσ

4

× (gλσ,β δµα + gλσ,α δ
µ
β − Nλσβ δµα − Nλσα δ

µ
β )


+


gλµ

2
τ
ρ
βα δgρλ −

gλµ

2
τ
ρ
βα gρλ

−
gλσ

4
(δgλσ,β δµα − δgλσ,α δ

µ
β )

+
δgλσ

4
(gλσ,β δµα − gλσ,α δ

µ
β + Nλσβ δµα − Nλσα δ

µ
β )


. (15)

Wµ
= gαβ


gλµ

2


δgαλ,β + δgλβ,α − δgβα,λ − τ

ρ
βλ δgαρ

− τ
ρ
αλ δgρβ


−
δgλµ

2


gαλ,β + gλβ,α − gβα,λ

− τ
ρ
βλ gαρ − τ

ρ
αλ gρβ

− Nαλβ − Nλβα + Nβαλ


−
gλσ

4


δgλσ,β δµα + δgλσ,α δ

µ
β


+
δgλσ

4


gλσ,β δµα + gλσ,α δ

µ
β − Nλσβ δµα − Nλσα δ

µ
β


. (16)
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