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a b s t r a c t

We study the variational principle on a Hilbert–Einstein action in an extended geometry with torsion
taking into account non-trivial boundary conditions. We obtain an effective energy–momentum tensor
that has its source in the torsion, which represents the matter geometrically induced. We explore about
the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude
that the boundary terms can be identified as possible sources for the cosmological constant and torsion
as the source ofmagneticmonopoles.We examine an example inwhich gravitational waves are produced
during a de Sitter inflationary expansion of the universe.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the standard treatment of the variational principle over the
Hilbert–Einstein action (HE), when amanifold has a boundary ∂M,
the action is supplemented by a boundary termwhich is in general
neglected [1]. However, this is not the only manner to study this
problem. As was recently demonstrated in [2], it is possible to
include the flux around an hypersurface that encloses a physical
sourcewithout the inclusion of extra terms in the HE action. In that
paperwas demonstrated that thenon-zero flux of the vectormetric
fluctuations through the closed 3D Gaussian-like hypersurface, is
responsible for the gauge-invariance of gravitational waves (GW).
However, the torsional contributions were neglected in that paper.
In the present paper we extend this analysis on the variational
principle, but for an extended geometrywith torsion.We obtain an
effective energy–momentum tensor with sources only in torsion,
which can be viewed as an effective matter tensor in a Riemannian
geometry. Such tensor represents matter geometrically induced,
but without extra dimensions. In addition, we develop a new
manner to obtain GW on a torsional manifold taking into account
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nontrivial boundary terms. The first contribution to GW with
purely torsional nature, was studied in Section 3 A, and the
second one based in the boundary term was studied in Section 3
B; in both cases for a general torsion. Also, we present an
example in Weitzenböck geometry obtaining the expression for
themagnetic densitymonopoles and a gravitationalwave equation
for a Friedman-Robertson-Walker (FRW) inWeitzeböck geometry.
Finally, in Section 6, we develop some final remarks.

2. Variational principle in torsional geometry

We consider the variational principle in presence of torsion for
a HE-like action.We have studied this fundamental problem in [3].
Therefore, we shall expose some results in present section without
making a full description. In [3], we have studied the contribution
of the new termswhich are not present in a Riemannian geometry.
The boundary term was studied in [2], but emphasizing the role of
non-metricity. Now, we shall consider some gravitational action in
an extended geometry (i.e. a non-Riemannian manifold), without
the presence of matter

I =
1
2κ


M
d4x

√
−gR, (1)

in which κ = 8π G, such that G is the gravitational constant, and

Rm
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where R = Rnmgnm is the scalar curvature. We have employed
the Einstein’s convention over repeated indexes. The ‘‘,’’ represents
a partial derivative and all the indices run between 1 and 4.
Furthermore, gab are the components of the metric tensor and
√

−g is the volume of the non-Riemannian manifold. The Eq. (2)
defines the Riemann curvature tensor, the Eq. (3) give us the Ricci
tensor and Eq. (II) is the scalar curvature. We denote with Γ a

bc an
arbitrary affine connection, which is defined according to

∇−→e a
−→e b = Γ n

ba
−→e n, (4)

where ∇−→e a denotes the derivative in a-direction of the tangent
space

−→e b

. Here, the up arrow means that the tangent space

in the position representation is described by partial derivatives
with respect to contravariant coordinates:

−→e b


≡


∂

∂xb


, and the

down arrowmeans that the cotangent space is generated by e
−→

b
≡

dxb

, such that e

−→
b(

−→e a) = δb
a. We wont consider any particular

symmetry in the connections. Now we shall make the variation of
the action in (1): δI = 0. Here we must take into account that
the scalar R in (II) is related to the connection in (4), which is an
abstract connectionwhich is in general non-Riemannian, but fulfils
the expression

Γ n
mr =

n
mr


+ K n

mr , (5)

with {
n
mr} the second kind Christoffel symbols representing the

Riemannian or Levi-Civita connections, and K n
mr the contortion

tensor, which in absence of non-metricity is entirely torsional
according to

K a
bc = −

gna

2
{T s

cn gbs + T s
bn gsc − T s

cb gsn}, (6)

with the torsion tensor defined by

T n
mr = Γ n

rm − Γ n
mr , (7)

which is a valid expression in a coordinate basis of the four
dimensional tangent space to the space–time manifold (TM4). In
present work we impose the non-metricity free condition

Nnmr = gnm ;r = 0, (8)

for an analysis of such contribution to the GW the reader can see
[3]. The variation of the Ricci must be related to the variation of the
connections obtaining a generalised Palatini identity for torsional
geometry

gmr δRmr = W n
;n −

1
2
gmr(δΓ n

pr T
p
mn + δΓ n

pm T p
rn), (9)

with
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kr δn

m (10)

where W n
= gmrW n

mr . With the use of Eq. (9) in the variation of
the action we obtain
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In the first integral we recognize the Einstein tensor for the
torsional connection. The second one is due to the boundary term.
The third integral is completely originated by the torsion. This is a
non-Riemannian contribution.

To finalize this section we must present the explicit form of
the W n

mr = W n
(mr) + W n

[mr] tensor, where the symmetric and

antisymmetric contributions are, respectively given by

W n
(mr) =


gkn

2


δgmk ,r + δgkr ,m − δgrm ,k − T t

rk δgmt

− T t
mk δgtr


−

δgkn

2


gmk ,r + gkr ,m

− grm ,k − T t
rk gmt − T t

mk gtr


−
gkl

4


δgkl ,r δn

m

+ δgkl ,m δn
r


+

δgkl

4


gkl ,r δn

m + gkl ,m δn
r


, (12)
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such that W n
= W n

(mr) g
mr .

3. Physics of the torsional geometry and 4D induced matter

In presence of torsion, but zero non-metricity, the variation of
the action takes the form

δI =
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with
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Furthermore

∆
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The first integral in (14) includes the extended Einstein tensor
with the torsional (Weitzenböck) contribution, and the second
one includes the boundary contribution. We have obtained the
expression (14) in absence of matter. We can distinguish two
possible cases.

1. The first case describes infinity manifolds and there are no
boundary contributions: W n

;n = 0, so that the first integrand
in (14) is null:

Rab −
1
2
R gab =

1
2
L(ab). (17)

After some algebraic manipulation of L(ab), the last assumption
leads to a wave equation originated in the presence of torsion:

� (∆n
prsd δg sd T p

mn) = 0, (18)

where ∆n
prsd is given by (16).

2. The second case describes finitemanifolds so that the boundary
contributions are significative: W n

;n ≠ 0. In that case the first
integrand must be nonzero in order to δI = 0:

δgab

Rab −

1
2
R gab −

1
2
L(ab)


+ W n

; n = 0. (19)

In the relativistic formalism without boundary conditions
(i.e., when W n

; n = 0), the cosmological constant can be added
to the Einstein equations as an integration constant. Therefore,
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