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Abstract 

A new model of white noise based on the wavelet transform has been proposed. This model is more adequate for solving 
some radiophysical tasks, such as the problem of electromagnetic waves reflecting from the ionosphere. Moreover, it was 
shown that in terms of probabilistic description of the random-process trajectories, the wavelet implementation of this random 

process is more likely (using the probability density functional offered by Amiantov). The wavelet properties and the famous 
theorems of mathematical analysis and theory of chances were used to develop our model: the mean value theorem and 
Lyapunov’s central limit theorem. Our study resulted in obtaining a theorem on random-process expansion in terms of wavelet 
basis. It was also shown that the obtained results were in agreement with those of Kotelnikov. 

Copyright © 2016, St. Petersburg Polytechnic University. Production and hosting by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

Keywords: White noise; Fluctuation noise; Wavelet transform. 

According to Kotelnikov’s works [1] , normal fluc- 
tuation noise consists of a large number of pulses fol- 
lowing each other in random time intervals; it is also 

possible for such pulses to overlap. 
Ref. [1] and some other publications (see, for exam- 

ple, [2–4] ), define the noise analytically as a trigono- 
metric expansion. However, this model, characterized 

by a discrete spectrum, is not adequate for solving cer- 
tain radiophysical problems. For example, in problems 
on radio-wave reflection in the lower (turbulent) iono- 
sphere, it is more practical to use fluctuations with a 
continuous spectrum. 
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Let us take as a basis a probabilistic description 

of the possible trajectories of stationary random pro- 
cesses using the probability density functional F ( x ( t )), 
first introduced in Ref. [5] . In the case of a process that 
exhibits a flat power spectrum with a specific band- 
width, this functional is given by 

F ( x ( t ) ) = h exp 

( 

− 1 

2N 

∫ 

T 
2 

− T 
2 

x 2 ( t ) dt 

) 

, (1) 

where x ( t ) are the trajectories depending on the time 
t ; h is the quantity depending on the partition rank 

of the interval on which the trajectories are examined 

(it is the same for all trajectories if the partition rank 

tends to zero); N is the height of the power spectrum; 
T is the time interval under consideration. 

It is easy to see that under these conditions, when 

the functional is expressed by Eq. (1) , the wavelet 
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implementation of the process is more likely than the 
sine one. This follows from the fact that the integral 
in Eq. (1) diverges with an increase in T values for 
the sine function x ( t ), while for the wavelet it is finite. 

To further develop the results obtained in [1] , our 
study has analytically defined the noise that is a su- 
perposition of elementary random processes as an ex- 
pansion in terms of a wavelet basis. The proof of the 
theorem on the expansion of a stationary random pro- 
cess in terms of a wavelet basis is offered as a new 

result of our study. 
For the purposes of further discussion, it is practical 

to use instead of the dimensional quantities t and T 

(that have a time dimension) the dimensionless ones, 
by dividing them, for example, to t 0 =1 s; previous 
notations, namely t and T , will be used throughout 
the text for these quantities . 

Theorem. Let the W(t) noise be given in the interval 
[–T/2, T/2] by a superposition of ‘elementary’ random 

processes F k ( t ) : 

W (t ) = 

N ∑ 

k=1 

F k ( t ) , 

and the following conditions are fulfilled: 

(1) F k (t) are uncorrelated random processes; 
(2) N, which is the number of pulses falling in the 

[–T /2, T /2] interval, is a random variable, and 

N �1 ;
(3) the energy of the process 
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remains unchanged in each implementation of 
the random process. 

Then from the standpoint of the mean-square con- 
vergence, the following expansion is valid: 
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where C ψ 

is the normalization constant [4] , equal to 

C ψ 

= 

∫ ∞ 
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∣∣∣ ˆ �0 ( ω ) 

∣∣∣2 

ω 

dω 

and depending on the chosen mother wavelet; the ran- 
dom variables �i, j , χi, j εN ( 0, 1 ) q 

+ 

k , q 

−
k are, respec- 

tively, the areas of the positive and the negative ordi- 
nate sets of F k ( t ) implementations. 

Proof. Let us use the commonly accepted notation 

�i, j ( t ) = 2 

− i 
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(
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)

for the wavelets [7] and examine wavelets �i, j (t ) 
and �0 (t ) satisfying the following conditions when 

T → ∞ : ∫ 
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Let us write the coefficients W ( i , j ) of the expansion 

W ( t ) in terms of these wavelets [6] : 

W ( i, j ) = 

N ∑ 

k = 1 
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F k ( t ) �i, j ( t ) dt . 

The implementation of F k ( t ) is, generally speak- 
ing, an alternating function with an arbitrary num- 
ber of zeroes (in its medium) that can be represented 

by tuples of positive and negative bursts, so that the 
expressions 
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are true. 
Let us consider the positive bursts and apply the 

mean value theorem known from mathematical analy- 
sis to the first integral of Eq. (5) : 
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(6) 

Let us evaluate the modulus of the covariance R of 
random quantities q 

+ 

k and �i, j ( ̄t k ) using the Cauchy–
Bunyakovsky–Schwarz inequality: 
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