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a b s t r a c t

We generally describe vibrational and Brownian dynamics of a shear oscillator interacting with a
confined Newtonian fluid. We show that the shear oscillator exhibits three characteristic dynamics in
viscous, weak inertial, and strong inertial regimes, and the dynamics are controlled by two system pa-
rameters, effective confining height and oscillator-fluid coupling strength. While resonances of oscilla-
tors are usually deteriorated in fluids, we interestingly find the resonances arisen in originally
overdamped oscillators, originated from hydrodynamic memory effects in strong inertial regime. The
present theory could be exploited for improving designs and performances of shear oscillators in fluids,
and reciprocally for investigating fluid properties by using shear oscillatory probes such as atomic force
microscope in shear-mode.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The mechanical oscillator is a fundamental tool in science and
technology for measuring physical interactions ranging from
atomistic quantum forces [1] to cosmological gravitational waves
[2]. In particular, oscillators are typically employed as sensors in
micro-electromechanical system (MEMS) [3] and scanning probe
microscopy (SPM) [4]. With the increased utilization of MEMS and
SPMs in nano-bio technology, liquid-immersed MEMS and SPMs
are emerging in a range of applications. Examples include envi-
ronmental sensing [5,6], bio-chemical mass detection [7], single
molecule force spectroscopy [8], and visualizing biomolecular
processes [9] in liquids. These applications require sensitive and
precise measurement of the external forces exerted on the oscil-
lators, which can be extracted from their dynamic response in
fluids. Therefore, as evident by recent attention [10], it is important
to understand the dynamic responses of mechanical oscillator
interacting with fluids quantitatively.

An oscillator's dynamics in a fluid is highly coupled to the fluid
hydrodynamics. The kinetic motion of the oscillator is damped by
the viscous drag of the fluid, producing a flow around the oscillator.

The entrained flow then acts back on the oscillator, exerting in turn
a force on it. This oscillator-fluid ‘coupled’ nature strongly in-
fluences the dynamics and performance of the oscillator, depend-
ing on the time scale of the motions and the detailed geometry of
the system. For the tapping-mode oscillator, oscillating normal to a
nearby solid wall, the ‘coupled’ mechanics has long been compre-
hensively studied in vibrational [11e13] and in Brownian oscillators
[14]. On the other hand, for shear oscillators vibrating parallel to the
wall, the traditional Stoke's problem well describes the shear hy-
drodynamics of the confined fluid itself [15], while classical lubri-
cation theory solves the shear force between two sliding surfaces
neglecting the fluid inertia [16]. Although theses theories provide
critical understanding of the sheared fluid dynamics and associated
interaction, detailed dynamics of the shear oscillator coupled to the
fluid has not yet completely understood.

In this paper, we present the general dynamics solution for a
shear oscillator coupled to Newtonian fluid near a surface, taking
into account fully the fluid's inertia and viscosity. We provide a
holistic understanding of the coupled shear interaction and the
resultant three types of oscillator's dynamics, as summarized in the
phase map. Interestingly, we find resonances in vibrational and
Brownian motions of originally overdamped oscillators, induced by
hydrodynamic memory effect. These results not only could be of
practical use for efficient operation of shear SPM and MEMS in
measuring the shear friction and stress [17] and in sensitive im-
aging in fluids [9], but also offer a novel way to investigate material
properties using shear oscillators.
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2. Shear interactions mediated by a confined fluid

The coupled system of a shear oscillator and a confined fluid can
be modeled as shown in Fig. 1(a), where the upper plate represents
the oscillator and laterally oscillates on a fluid. This driven oscillator
interacting with the fluid is described as

mx€þ b _xþ kx ¼ Feiwt þ Fs; (1)

wherem is the effective mass of the probe, b the intrinsic damping
coefficient, k the spring constant of the probe, Feiwt the driving
force, w the driving angular frequency, and Fs the fluid-induced
shear force. Under no-slip boundary condition at the probe-fluid
interface, the shear force is given by the product of the contact
area s and the stress tensor tij at the interface, i.e.,
Fs ¼ �stxzðhÞ ¼ �sh vU=vz

��
z¼h, where h is the viscosity and U the

velocity field of the fluid in the x-direction. Here only the xz-
component of tij is considered due to the symmetry. The fluid
motion U(z,t) is determined by Navier-Stokes equation for an
incompressible Newtonian fluid with the symmetry [18],

vU
vt

¼ h

r

v2U
vz2

; (2)

where r is the fluid density. The oscillator-fluid dynamics (Fig. 1(a))
is generally governed by the coupled equations of Eqs. (1) and (2)
with no-slip boundary conditions at the upper and lower in-
terfaces, Uðz ¼ h; tÞ ¼ _xðh; tÞ and U(z¼0,t)¼0.

In the present oscillatory system, we look for periodic solutions
for both the probe motion x(h,t) and the fluid flow U(z,t) such as,

Uðz; tÞ ¼ u eiðwtþqÞ; (3)

xðh; tÞ ¼ Aeiðwtþq�p=2Þ: (4)

Substituting Eq. (3) into Eq. (2), we obtain the velocity profile of
the fluid,

u≡
U
wx

¼ i
sin

n
ð1� iÞh

ffiffiffiffi
w

p
z=h

o
sin

n
ð1� iÞh

ffiffiffiffi
w

p o ; (5)

where h ¼ h=d0, d0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h=ðw0rÞ

p
, w ¼ w=w0, and w0¼k/m. Then,

the spatial gradient of the fluid velocity field (Eq. (5)) gives the
fluid-mediated shear force,

Fs≡Fs
.�

k0w
3=2x

�
¼ �ð1þ iÞcot

n
ð1� iÞh

ffiffiffiffi
w

p o
; (6)

where k0 ¼ sw3=2
0

ffiffiffiffiffiffiffiffiffiffiffi
hr=2

p
.

Here two characteristic parameters d0 and k0 were used to
describe the fluid velocity and the interaction force. The charac-
teristic length d0, called ’the depth of penetration’ [18], is the
thickness of the fluid layer where the viscosity effect is dominant
from the confining surface. As shown in Fig. 1(c), the interaction
force Fs exhibits the usual viscous drag force proportional to 1/h at
h<d0 with w¼w0, while it remains constant at h>d0 (Eq.(6)). The
constant value, Fs at h>d0, is given by Fsz2k0A. Thus, k0 serves as the
characteristic force constant of the fluid-mediated shear
interaction.

The interaction force Fs can be represented by the sum of anti-
elastic and viscous damping forces. Notice that the fluid velocity
u has the real and imaginary components, u≡ux þ iuv. From the
definition of u ð≡U=ðwxÞÞ, ux corresponds to a flow proportional to
the displacement of the plate, while uv to the velocity (v¼iwx). The
resulting interaction force, which is given by the spatial gradient of
ux and uv, is therefore written as the sum of position-dependent
elastic force and velocity-dependent viscous force,
Fs¼�ksx�ibswx, where we define effective elasticity ks and damp-
ing coefficient bs of the interaction. Notice that the elastic and

Fig. 1. Shear interaction mediated by a confined fluid. (a) Schematic diagram of the coupled oscillator-fluid system, where the mechanical oscillator is under shear motion above the
fluid. (b) Numerical spatio-velocity profiles of the shearing fluid versus the normalized confining height h

ffiffiffiffi
w

p
. As the confining distance or the shear frequency, or equivalently h

ffiffiffiffi
w

p
,

increases, there arises a nonlinear inertial flow ðuxÞ, black curves) besides the usual linear viscous flow (uv , red curves). The fluid-mediated forces exerted on the upper plate,
proportional to the velocity gradient, are represented by the blue and purple arrows. (c) The magnitude of the normalized total interaction force Fs (Eq. (6)). (d) Decomposition of Fs
into the inertial ðksÞ and viscous damping ðbswÞ interactions, corresponding to the real and imaginary parts of Fs, respectively. (e) Ratio of inertial to viscous forces,

����ks=bsw
����, versus

h
ffiffiffiffi
w

p
. While bsw dominates in viscous regime ðh

ffiffiffiffi
w

p
<1Þ, ks and bsw exhibit the same magnitude in inertial regime ðh

ffiffiffiffi
w

p
>1Þ [19]. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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