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In order to act as extrinsic pseudocapacitormaterials, nanoscale vanadium oxides are required to simultaneously
exhibit a capacitance-based high power density and an intercalation-based high energy density. We have fabri-
cated a three-dimensionally ordered macroporous (3DOM) structure with a wall thickness of 14 nm that fulfills
the above requirements. The 3DOM vanadium oxide film exhibits high rate performance with 355 F g−1 at
0.5 A g−1 and 125 F g−1 at 15 A g−1. The enhanced pesudocapacitive effect and Li-ion diffusion coefficient
based on the 3DOMnanostructure, also contributes to the high rate capability of vanadia, which can be confirmed
by cyclic voltammetry and chronoamperometry.
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1. Introduction

Vanadiumoxides have beenwidely studied as electrochemical ener-
gy storage materials for supercapacitors and Li-ion batteries [1–7] be-
cause of their ability to undergo redox intercalation [6,8–10] and the
various available oxidation states of vanadium (V–II) [10]. However,
their small Li-ion diffusion coefficient and electrical conductivity
[11–15] cause the intercalation process to be slow, seriously limiting
their energy storage performance [16]. Nanostructured vanadium ox-
ides can provide shortened Li-ion diffusion distances and increased sur-
face areas, leading to efficient Li-ion intercalation and, therefore, to high
energy density [17]. Another significant phenomenon that occurs with
nanostructuring is the pseudocapacitive effect, originating from the
fast faradaic processes occurring at the materials' surface, which can
generate high power density [6,18–20]. Nanostructuring is of special
significance for vanadium oxides because they are extrinsic
pseudocapacitor materials [1,3,5,6,21–25]. The pseudocapacitance of
nanostructured vanadia depends strongly on their contact area with
the electrolyte. For example, aerogels exhibit almost perfect capacitive
cyclic voltammetry (CV) curves [5], while electrospun nanorods exhibit
CV curves with sharp and well-separated redox peaks [2].

Among the various nanostructures available, the three-
dimensionally ordered macroporous (3DOM) structure is an important

nanoarchitecture for Li-ion storage materials [26–30]. Its bicontinuous
structure provides intercontinuous voids for good electrolyte penetra-
tion, and continuous thin walls for effective electron transport and Li-
ion intercalation. Typically, 3DOM structures are prepared from face-
centered-cubic colloidal crystals. The sphere packing factor of 74% in
colloidal crystal produces 3DOM materials with a similar porosity and
a high surface area [26]. Furthermore, employing small diameter
spheres results in 3DOM materials with thin wall structures that may
exhibit pseudocapacitive behavior [1,5,6,21–25].

Herein,we have prepared3DOMvanadiumoxidefilmsby electrode-
position within colloidal crystals. The films exhibit a significantly en-
hanced rate capability. Besides the typical advantages nanostructuring
provides, CV and chronoamperometry have revealed that the observed
improved performance is also the result of pseudocapacitive effect and
improved Li-ion diffusion coefficient.

2. Experimental

Polystyrene colloidal crystals with a sphere diameter of 165 or
480 nm on indium-doped tin oxide substrates were grown by a con-
trolled vertical drying method [31,32]. Anodic deposition of vanadia
within the colloidal crystals was performed at 2 V versus Ag/AgCl
from a 1:1 mixture of deionized water and ethanol containing VOSO4

(0.25 M). After removing the template with toluene and drying at
120 °C for 6 h, 3DOM vanadia films were obtained. The 3DOM vanadia
samples obtained from colloidal crystals with sphere diameter values
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of 165 and 480 nmwere denoted as SD-165nmand SD-480 nm, respec-
tively. For comparison, template-free vanadia films were also prepared.
The mass loading of SD-165 nm, SD-480 nm, and template-free film
were ca. 0.42, 0.55, and 1.57 mg cm−2, respectively.

Scanning electron microscopy (SEM) images were taken with a FEI
Helios Nanolab 600i instrument. Transmission electron microscopy
(TEM) images and selected-area electron diffraction (SAED) patterns
were recorded on a FEI Tecnai G2F30 instrument. X-ray photoelectron
spectroscopy (XPS) analysis was conducted on a PHI 5700 ESCA system.
The electrochemical properties were evaluated using a nitrogen-filled
three-electrode cell with an electrochemical analyzer (CHI 660D) in 1M
LiClO4–propylene carbonate. A Ag/AgCl electrode was used as the refer-
ence electrode and a platinum plate was employed as the counter elec-
trode. A Luggin capillary connected by a salt bridge was used to
minimize iR-drop errors and to prevent contamination of the cell
electrolyte.

3. Results and discussion

Due to the 3D ordered structure of the colloidal crystals, the SD-
165 nm and SD-480 nm samples display honeycomb-like structures
throughout their entire volume, with nanoscale walls with thickness
of about 14 and 69 nm, respectively (Fig. 1a and b). Although powerful
ultrasonication during the TEM-sample preparation partly destroyed its
structure, the 3DOM nanostructure of SD-165 nm is still clearly ob-
served (Fig. 1c). The presence of only amorphous rings in the SAED

pattern indicates that the as-deposited vanadia is amorphous. The XPS
results of the 3DOM vanadia demonstrate its high purity and the pres-
ence of a mixture of V4+ (515.8 eV) and V5+ (516.9 eV) species
(Fig. 1d and e) [33]. The template-free vanadia film exhibits a compact
nature (Fig. 1f).

Fig. 2a, b, and c shows, respectively, the galvanostatic discharge/
charge performance of SD-165 nm, SD-480 nm, and the compact films
at 0.5, 1, 2, 5, 10, and 15 A g−1. These films show featureless and sym-
metric discharge/charge curves, similar to the curves of other amor-
phous and nanocrystalline vanadia species [1,6,21–25], indicating that
they are suitable materials for supercapacitors [6]. The 3DOM films ex-
hibit a much higher specific capacitance (Cs) and rate capability than
the compact film, and the 3DOM film with smaller pores (SD-165 nm)
shows higher Cs values (Fig. 2d). At 0.5 A g−1, the Cs value of SD-
165 nm was calculated to be 355 F g−1, higher than that of SD-
480 nm and the compact film (240 and 187 F g−1, respectively).
When the current density reached a high value of 15 A g−1, SD-
165 nm still maintained a high Cs value of 125 F g−1, whereas values
of merely 74 and 22 F g−1 were obtained for SD-480 nm and the com-
pact film, respectively. SD-165 nm exhibits superior charge storage per-
formance compared to many other high-surface-area vanadia, such as
nanosheets (314 F g−1 at 0.5 A g−1), interconnected nanoporous net-
works (304 F g−1 at 0.1 A g−1), and starfruit-like nanoparticles
(216 F g−1 at 1 A g−1) [25,34–39].

Besides the common advantages of nanostructures, such as large
surface area and short Li-ion diffusion paths [40], the absence of plateau

Fig. 2. Galvanostatic charge/discharge curves of (a) SD-165 nm, (b) SD-480 nm, (c) the compact film, and (d) variation of the specific capacitance with the current density for the three
vanadia films.

Fig. 1. SEM images of (a) SD-165 nm and (b) SD-480 nm (side view in the inset). TEM image of (c) SD-165 nm (SAED pattern in the inset). (d)Wide-range XPS spectrum, and (e) V2p3/2
core peak spectra of SD-165 nm. (f) SEM images of the compact vanadia film (side view in the inset).
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