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a b s t r a c t

I present in details the SU(N) Schwinger boson formalism, also known as flavor wave theory, that has
been used several times in the literature. I use the method to study the ferroquadrupolar phase of a
quantum biquadratic Heisenberg model with spin S¼1 on the triangular lattice with third-nearest-
neighbor interactions. Results for the phase diagram at zero temperature and the static and dynamical
quadrupolar structure factors are presented. In principle, the results could be applied to NiGa2S4.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic moments are expected to order for temperatures
below a critical temperature. In most magnetic compounds these
magnetic moments form a long-range ordered ferromagnetic or
antiferromagnetic structure, depending on the nature and
strength of the interactions of the spins. However, in some “fru-
strated” magnetic models, the low temperature phase has no long-
range magnetic order. Instead, they develop some exotic states
such as nematic order or spin liquid states [1].

As pointed out by Stoudenmire et al. [2], the triangular lattice
antiferromagnet is of great interest because of its potential to
exhibit exotic phases as a result of frustration and because it is the
underlying lattice of many real materials.

The aim of this paper is to study the ferroquadrupolar phase of
the biquadratic S¼1 triangular lattice antiferromagnet with third-
neighbor interactions, because, as Stoudenmire et al. [2] have
shown, using Monte Carlo simulations, this model presents a fer-
roquadrupolar phase for certain values of the couplings. But before
doing that I will present in full details the theoretical formalism
adequate to treat nematic phases that has been used in the
literature.

2. Schwinger boson formalism

One very useful analytical technique to study magnetic systems
is the SU(2) Schwinger boson (SB) formalism [3]. In this re-
presentation two bosons operators a and b are introduced such
that the spin components are written as

= = = ( − ) ( )
+ + − + + +S a b S b a S a a b b, , , 1

z 1
2

with the constraint

+ = ( )+ +a a b b S2 . 2

The boson occupation 2S determines the representation of SU
(2). The spin states are given by

= ( ) ( )
( + )!( − )! ( )

+ + + −
S m

a b

S m S m
v, ,

3

S m S m

where S m, labels the S2 and Sz eigenvalues and v is the
Schwinger bosons vacuum. For S¼½ we have

+ = − = ( )+ +a v b v, . 4

If one has an ordered state one can condensate one of the
bosons. For instance, if in Eq. (4) the ground state is the + state,
one can condensate the a boson and take, using the constraint (2),

→ − ( )+ +a a S b b, 2 . 5

This leads to the well known Holstein–Primakoff representa-
tion (HP), which single out the Sz direction, which defines their
vacuum. The SB are useful to study the symmetric phases, while
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HP are convenient for the magnetically ordered broken symmetry
phases.

We notice that in a truly disordered symmetric phase we have

<( ) > = < ( ) > = < ( ) > = ( + )
( )S S S

S S 1
3

. 6
z x y2 2 2

To study the symmetric phase, for instance a two dimensional
ferro or antiferromagnet at T40, we define a bond operator [3]

≡ + ( )+ +F a a b b , 7ij i j i j

write the Hamiltonian in terms of Fij and then decouple the four
operator terms in a mean field approximation. However, if we take
T-0, in order to satisfy a constraint equation, we must impose a
macroscopic occupation at k¼0 (Bose condensation) and could
obtain an ordered state at T¼0 (as happens in the two dimen-
sional Heisenberg model, for example). Thus the SB mean-field
theory is more general than the HP approximation because the HP
formalism starts from a prescribed ferro- or antiferro- order, while
the SB has no bias on the order or disorder of the ground state in
advance. The details are given in Ref. [3], and here I just want to
note that the SB formalism describes magnetically disordered and
ordered phase.

For spins S4½, several types of ordering, besides the well
known dipolar ordering, such as nematic, octupolar or any higher
multipolar ordering (where oS4¼0) are also possible. This is,
multipolar ordering of the type < >α α αS S S...

n1 2
with n¼1 (dipolar),

n¼2 (quadrupolar), n¼3 (octupolar), etc., up to n¼ 2S can exist
[4,5].

In these cases the ground state orderings do not have a classical
counterpart at T¼0 (states with oSr4¼0 and finite higher
multipolar orders are a purely quantum phenomenon [6]).

In a system with nematic order one has oSr4¼0, but the
order can manifest, for instance, as

<( ) > ≠ ( + )
( )S

S S 1
3

. 8
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As pointed out by Wang and Xu [7], in the SU(2) formalism
there is no boson which condensation would lead to this order.
This is, it is impossible to describe the spin nematic phase in this
formulation as a boson condensate, because a nonzero condensate
oa4 or ob4 necessarily produces a nonzero magnetic dipole
moment. Besides that, Muniz et al. [4] have shown that for sys-
tems that have nematic order, the standard spin wave theory
(SWT) is not adequate, even to describe the ordered phases. This
problem was first considered by Papanicolaou [8], who considered
the case of spin S¼1. In this case, besides the three components of
spin αSr (α¼x, y, z), one has the following operators (quadrupolar
order parameters) that describe quadrupolar order:
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As it is well known, the three components of αSr (for any value
of the spin S) obey the standard commutation rule and are
therefore generators of the SU(2) representation. However if we
want to take into account ordering described by the operators (9),
we should enlarge the symmetry group. We have now 8 para-
meters ( αSr ,Q), which are generators of the SU(3) representation.

The same is true for higher values of spins. For S¼3/2, one has
octupolar order and thus to treat this order we should use a SU
(4) representation [5].

The generators of SU(3) can be expressed in terms of three
bosons operators (or fermions operators) an that obey the com-
mutation relations [9,10]:

δ[ ] = [ ] = [ ] = ( )+ + +a a a a a a, , , 0, , 0. 10n m nm n m n m

Defining the operator [9]

λ α= ^ ^ = … ( )α α
+

Q a a
1
2

, 1, 2, 8 11

where ^ = ( )+ + +a a a a, ,1 2 3 and λα are the Gell-Mann matrices that
satisfy the commutation relations

λ λ λ[ ] = ( )α β αβγ γif, 2 12

where fαβγ are the structure constants [9] we can show that

[ ] = ( )α β αβγ γQ Q if Q, , 13

this is, the operators Qα obey the SU(3) Lie-algebra.
It has been shown that spin-1 models with single ion aniso-

tropy [11–13], or biquadratic interactions [1,9,10] support T¼0
nematic order, and models with spin-3/2 and cubic exchange term
supports octupolar order [5]. Explicit magnetic anisotropy acts like
a symmetry breaking field to the quadrupolar order parameter [2].

Papanicolaou [8] started by choosing the following basis

= ( − − ) = ( + − )

= − ( )

x i y

z i

1 1 / 2 , 1 1 / 2 ,

0 , 14

where n are eigenstates of Sz. Next, one introduces a set of three
boson operators αt (α¼x, y, z) equivalent to the a's operators given
in (10), defined by

= = = ( )+ + +t v x t v y t v z, , , 15x y z

where v is the vacuum state. We have the constraint

+ + = ( )+ + +t t t t t t 1, 16x x y y z z

for single site occupancy on each site. In terms of the t operators
we can write

ε= − ( )α
αβγ β γ

+S i t t , 17

ε[ ] = ( )α β
αβγ

γS S i S, . 18

Writing the operators t's as a vector t¼(tx, ty, tz)T we see that this
representation has a U(1) gauge freedom t-eiθt (and this explains
the different notations used by different authors). In term of this
operators Eq. (9) becomes

= ( + − ) ( )
( ) + + +Q t t t t t t

1
3

2 , 19an nx nx ny ny nz nz
0
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2
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Finally we introduce another set of bosons operators
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and so
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