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a b s t r a c t

Temperature-dependent magnetic anisotropy due to grain boundaries in nanocrystalline Ni has been
studied by simulating experimental magnetization data with the stochastic Landau–Lifshitz–Gilbert
theory. In the model the grain boundary magnetic anisotropy energy is expressed as the sum of the
uniaxial anisotropy and the cubic anisotropy, characterized by Kua and Kca anisotropy constants. By
comparing the calculated magnetization with the experimental magnetization measurements at finite
temperatures, the values of Kua and Kca can be determined. For nanocrystalline Ni it is found that with
increasing temperature Kua decreases and Kca increases. At low temperatures Kua dominates the grain
boundary anisotropy energy, whereas Kca is very small and it can be neglected. At room temperature Kua

and Kca are of the same order with the corresponding ratio ≈K K/ 1.9ua ca , both coefficients are much
larger than the magnetocrystalline anisotropy constant.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Surface effects play an important role in the magnetic proper-
ties of ferromagnetic particle systems and the influence of surface
is dominant when the particle size decreases to the nanometer
scale [1]. Experimental studies of assemblies of magnetic nano-
particles show that the magnetic anisotropy increases with de-
creasing particle size due to the contribution from surface aniso-
tropy [2–6]. The surface anisotropy constant Ks, defined as the
volume density of the surface anisotropy energy, can be de-
termined from the phenomenological formula of Bodker and co-
workers [2]:
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which requires the determination of the effective anisotropy
constant Keff by the measurements of thermally activated magnetic
viscosity [7] or the dynamic measurements of magnetic suscept-
ibility [8]. Here, D is the diameter of the particles and Kc is the core
magnetocrystalline anisotropy. Validity of Eq. (1) has been ques-
tioned because it is based on the assumption that the contribu-
tions of the core and surface of nanoparticles to the total effective
anisotropy are simply additive and the equation neglects the
crosslinked effects [9,10]. It has also been demonstrated that Eq.
(1) is restricted to the interacting systems where the interparticle
interactions are significant [11].

Theoretical studies have shown that a cluster of atoms with
many spins can be represented as a single-domain particle with an
effective magnetic moment →m [5,9,12-14]. The surface-induced
magnetic anisotropy energy Es of the cluster can be expressed as:
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where α^ ( = )αm x y z, , are the Cartesian components of the unit
vector along the moment direction, Kua and Kca are the anisotropy
constants representing the first-order surface anisotropy (FOS),
arising from the broken symmetry of crystal environment and
missing neighbours, and the second-order surface anisotropy
(SOS), caused by the deviation of atomic spins on the surface from
the collinearity of the core spins of the cluster due to the com-
petition of the surface anisotropy and the exchange interactions. In
practice it is difficult to determine FOS and SOS contributions to
the surface anisotropy with sufficient precision [13]. Jamet and co-
workers [15] and Kachkachi and Bonet [13] suggested using micro-
SQUID technique to measure the switching field of a single cluster
along various crystallographic directions and then fitting the ex-
perimental results with the pre-assumed anisotropy energy
function with different values of FOS and SOS.

Similar to the effect of the surface in magnetic properties of
nano-particle systems, grain boundaries in nanocrystaline (nc)
materials induce the strong magnetic anisotropy due to the
breaking of the symmetry of the atoms in these regions, termed
here the grain boundary anisotropy. For magnetic nc materials, the
SOS anisotropy arising from the non-collinearity of atomic spins at
the grain boundaries with respect to the grain interiors, is large at
finite temperatures [16]. For nc-Ni, it has been found that at low
temperatures the grain boundary anisotropy energy can be re-
presented by a uniaxial term, whereas the SOS anisotropy is very
small and it can be neglected [19]. As temperature increases, the
contribution from the thermal energy reduces the intensity of spin
exchange interactions in the grains inducing the significant
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deviation of the grain boundary spins from the moment direction
of the atoms inside the grain. As a result one observes a substantial
increase of SOS anisotropy energy at higher temperatures [16].

At the moment, we have no quantitative understanding of the
contribution of grain boundary anisotropies to the magnetic
properties of nc materials, since there is no suitable technique
which permits measurement of these effects. The suggested mi-
cro-SQUID method [15,13] cannot be used to differentiate between
SOS and FOS. Also, the magnetic interactions between individual
grains are strong in nc materials, and the Stoner–Wohlfarth theory
[17], applicable only to the non-interacting magnetic moments,
cannot be used to obtain these properties from modelling studies.
[19,16]. The method relies on the application of stochastic Landau–
Lifshitz–Gilbert (LLG) model of magnetization dynamics [18] in-
corporating the anisotropy energy as per Eq. (2), and it requires
matching the theoretical calculations of the magnetization against
measured magnetization hysteresis data across different
temperatures. [19,16].

2. Results and discussion

The experimental procedure and characterization of the prop-
erties of nc-Ni samples have been described in previous papers
[19,16]. Nanocrystalline Ni foil of the thickness 50 μm and grain
size of 22.5 nm was produced by electrodeposition. The foil had a
fiber texture with two dominant texture components, (200) and
(111), aligned along the growth direction of the deposit, perpen-
dicular to the surface of the foil. The volume fraction fc of (200)
and (111) texture components was 23% and 6% and the remaining
fraction of the grains was oriented randomly in the plane of the
foil. The samples for magnetic property measurements were
punched from the nc-Ni foil and had diameter of 3 mm. The
magnetic properties of nc-Ni samples were measured with a
Quantum Design SQUID magnetometer in two directions of the
applied field, parallel (in-plane) and perpendicular (out-of-plane)
to the sample surface, at temperatures T¼2 K, 100 K and 298 K.
Experimental magnetic hysteresis loops are shown in Figs. 1–3. At
a given temperature, the difference in saturation magnetization Ms

between the measurements in the two applied magnetic field
directions is caused predominantly by the anisotropic dipolar in-
teractions or the unsymmetrical sample shape.

The hysteresis loops at different temperatures have been

simulated using Landau–Lifshitz–Gilbert (LLG) theory of magneti-
zation dynamics developed to model properties of nc materials.
The method involves numerical solution of the stochastic LLG
equation to determine the anisotropy constants as described by
Eq. (2). Detailed procedure and setting of the numerical calcula-
tions are described in Refs. [16,19] and are briefly summarized in
the following. The calculations for field-dependent magnetization
are performed in Cartesian X, Y, Z space containing × ×35 35 4
uniform spherical grains with the diameter 22.5 nm equal to the
average grain size and located on a simple cubic lattice with the
lattice constant =L 22.2 nmP . A choice of Lp, being slightly smaller
than the average grain size, is governed by the consideration of
exchange interaction between neighboring grains [19]. The peri-
odic boundary conditions along X and Y directions in the plane of
the sample and fixed boundary in the Z direction perpendicular to
the sample surface are applied to account for the geometry of the
sample. The total energy Etot of the modelling system includes the

contributions from the external field
→
Hext , magnetocrystalline and

grain-boundary anisotropies, and dipolar and exchange interac-
tions. At temperature T the total energy can be expressed as:
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where and are the components of unit vector m̂i along the di-
rection of magnetic moment →mi of the i-th grain at the displace-
ment →ri in two local Cartesian coordinate systems respectively.
Here, ^ = (→ − →)r r r L/ij i j p with = |^ |r rij ij and N denotes the total number
of grains in the sample. Kc(T) is the magnetocrystalline anisotropy
constant whose values at different temperatures are taken from
the experimental measurements of the bulk material [20,21]. Ap(T)
is the intergrain exchange constant introduced to characterize the

Fig. 1. Hysteresis loop of nc-Ni sample in the orientation of the magnetic field parallel (Fig. 1a) and perpendicular (Fig. 1b) to the sample surface at T¼2 K. The solid red
curves are the experimental measurements with the saturation magnetization =M 57.5 Am /kgs

2 and 59.8 Am2/kg in the direction of the magnetic field parallel and per-
pendicular to the sample surface respectively. The point-dash blue curves represent the simulation results. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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